Tryptone-stabilized silver nanoparticles kill breast cancer cells by perturbing the structural integrity of tubulin and downregulating lipid metabolism.
Several microbial pathogens are capable of forming biofilms. These microbial communities pose a serious challenge to the healthcare sector as they are quite difficult to combat. Given the challenges associated with the antibiotic-based management of biofilms, the research focus has now been shifted towards finding alternate treatment strategies that can replace or complement the antibacterial properties of antibiotics. The field of nanotechnology offers several novel and revolutionary approaches to eradicate biofilm-forming microbes. In this study, we evaluated the antibacterial and antibiofilm efficacy of in-house synthesized, tryptone-stabilized silver nanoparticles (Ts-AgNPs) against the superbug
Serratia marcescens
. The nanoparticles were of spherical morphology with an average hydrodynamic diameter of 170 nm and considerable colloidal stability with a Zeta potential of − 24 ± 6.15 mV. Ts-AgNPs showed strong antibacterial activities with a minimum inhibitory concentration (MIC
50
) of 2.5 µg/mL and minimum bactericidal concentration (MBC) of 12.5 µg/mL against
S. marcescens
. The nanoparticles altered the cell surface hydrophobicity and inhibited biofilm formation. The Ts-AgNPs were also effective in distorting pre-existing biofilms by degrading the extracellular DNA (eDNA) component of the extracellular polymeric substance (EPS) layer. Furthermore, reduction in quorum-sensing (QS)-induced virulence factors produced by
S. marcescens
indicated that Ts-AgNPs attenuated the QS pathway. Together, these findings suggest that Ts-AgNPs are an important anti-planktonic and antibiofilm agent that can be explored for both the prevention and treatment of infections caused by
S. marcescens
.
Graphical abstract
Supplementary Information
The online version contains supplementary material available at 10.1007/s00775-022-01977-w.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.