Small interfering RNAs (siRNAs) induce sequence-specific gene silencing in mammalian cells and guide mRNA degradation in the process of RNA interference (RNAi). By targeting endogenous lamin A/C mRNA in human HeLa or mouse SW3T3 cells, we investigated the positional variation of siRNA-mediated gene silencing. We find cell-type-dependent global effects and cell-type-independent positional effects. HeLa cells were about 2-fold more responsive to siRNAs than SW3T3 cells but displayed a very similar pattern of positional variation of lamin A/C silencing. In HeLa cells, 26 of 44 tested standard 21-nucleotide (nt) siRNA duplexes reduced the protein expression by at least 90%, and only 2 duplexes reduced the lamin A/C proteins to <50%. Fluorescent chromophores did not perturb gene silencing when conjugated to the 5'-end or 3'-end of the sense siRNA strand and the 5'-end of the antisense siRNA strand, but conjugation to the 3'-end of the antisense siRNA abolished gene silencing. RNase-protecting phosphorothioate and 2'-fluoropyrimidine RNA backbone modifications of siRNAs did not significantly affect silencing efficiency, although cytotoxic effects were observed when every second phosphate of an siRNA duplex was replaced by phosphorothioate. Synthetic RNA hairpin loops were subsequently evaluated for lamin A/C silencing as a function of stem length and loop composition. As long as the 5'-end of the guide strand coincided with the 5'-end of the hairpin RNA, 19-29 base pair (bp) hairpins effectively silenced lamin A/C, but when the hairpin started with the 5'-end of the sense strand, only 21-29 bp hairpins were highly active.
Malattia Leventinese (ML) and Doyne honeycomb retinal dystrophy (DHRD) refer to two autosomal dominant diseases characterized by yellow-white deposits known as drusen that accumulate beneath the retinal pigment epithelium (RPE). Both loci were mapped to chromosome 2p16-21 (refs 5,6) and this genetic interval has been subsequently narrowed. The importance of these diseases is due in large part to their close phenotypic similarity to age-related macular degeneration (AMD), a disorder with a strong genetic component that accounts for approximately 50% of registered blindness in the Western world. Just as in ML and DHRD, the early hallmark of AMD is the presence of drusen. Here we use a combination of positional and candidate gene methods to identify a single non-conservative mutation (Arg345Trp) in the gene EFEMP1 (for EGF-containing fibrillin-like extracellular matrix protein 1) in all families studied. This change was not present in 477 control individuals or in 494 patients with age-related macular degeneration. Identification of this mutation may aid in the development of an animal model for drusen, as well as in the identification of other genes involved in human macular degeneration.
Sorsby's fundus dystrophy (SFD) is an autosomal dominant retinal degeneration caused by mutations in the tissue inhibitor of metalloproteinases-3 (TIMP3) gene. Mechanisms of the visual loss in SFD, however, remain unknown. In a SFD family with a novel TIMP3 point mutation, we tested a hypothesis that their night blindness is due to a chronic deprivation of vitamin A at the level of the photoreceptors caused by a thickened membrane barrier between the photoreceptor layer and its blood supply. Vitamin A at 50,000 IU/d was administered orally. Within a week, the night blindness disappeared in patients at early stages of disease. Nutritional night blindness is thus part of the pathophysiology of this genetic disease and vitamin A supplementation can lead to dramatic restoration of photoreceptor function.
Butterfly-shaped pigment dystrophy of the fovea is an autosomal dominant eye disease characterized by a bilateral accumulation of yellowish or pigmented material at the level of the retinal pigment epithelium. It shares some clinical and histopathologic features with age related macular degeneration which is the most common cause of legal blindness in older patients. We screened affected patients from a three generation family with butterfly dystrophy for mutations in candidate genes. A base substitution was identified in the peripherin (RDS) gene and DNA sequencing revealed a G to A transition in codon 167 that substitutes aspartic acid for a highly conserved glycine. The mutation segregates with the disease phenotype (Zmax = 4, theta = 0) strongly suggesting that it causes the macular disease in this family.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.