How do antecedent (past) conditions influence land‐carbon dynamics after those conditions no longer persist? In particular, quantifying such memory effects associated with the influence of past environmental (exogenous) and biological (endogenous) conditions is crucial for understanding and predicting the carbon cycle. Here we show, using data from 42 eddy covariance sites across six major biomes, that ecological memory—decomposed into environmental and biological memory components—of daily net carbon exchange (NEE) is critical for understanding the land‐carbon metabolism, especially in drylands for which memory explains ~ 32% of the variation in NEE. The strong environmental memory in drylands was primarily driven by short‐ and long‐term moisture status. Moreover, the strength of environmental memory scales with increasing water stress. This universal scaling relationship, emerging within and among major biomes, suggests a potential adaptive response to water limitation. Our findings underscore the necessity of considering ecological memory in experiments, observations and modelling.
We take advantage of the spatial coverage provided by the Tropospheric Emission Spectrometer on-board the Aura satellite to evaluate processes that control seasonal variations in atmospheric water vapor HDO/H 2 O values (δD vapor ) over the tropical Andes. δD vapor is lower in austral summer (December, January, and February, DJF) than austral winter (June, July, and August, JJA), which is broadly consistent with precipitation studies and with δ 18 O snow preserved in tropical Andean glaciers. In DJF, 64% of δD vapor measurements over the tropical Andes are lower than predicted by Rayleigh distillation while 40% of JJA δD vapor measurements are lower than predicted by Rayleigh distillation. Air that has lower δD vapor than predicted by Rayleigh distillation at a given water vapor concentration (q) encounters low minimum outgoing longwave radiation (<240 W m À2 ) en route to the tropical Andes, suggesting convective intensity controls the isotopic ratios of these measurements. The broad regional coverage of the satellite data allows us to map the spatial extent of the region where isotopic ratios reflect convective processes in different seasons. In DJF, convection strongly influences δD vapor in the central tropical Andes. In JJA, convection influences δD vapor north of the tropical Andes. This pattern suggests that monsoon convection controls δD vapor in austral summer while large-scale advective mixing controls Andean δD vapor in austral winter.
Water vapor measured continuously by cavity ring-down spectroscopy from July 2012 to March 2013 on the hyperarid Chajnantor Plateau, northern Chile (elevation = 5080 m, pressure ≈ 550 hPa), has a mean deuterium excess (d-excess = δD À 8*δ 18 O) of 46‰ ± 5‰ and frequently exceeds 100‰ at low water vapor mixing ratios (q ≤ 500 ppmv). These measurements provide empirical support for theoretical predictions of free troposphere d-excess. The d-excess measured at this site can be understood in terms of supersaturation with respect to ice at relative humidities between 100% and 130%, followed by mixing with moist midtropospheric or lower tropospheric air en route to the plateau. The d-excess measured at Chajnantor is consistent with predictions for d-excess in the upper troposphere from isotope-enabled general circulation models and with high vapor saturation over ice in cloud-resolving and microphysical models.
Trees are long-lived organisms that integrate climate conditions across years or decades to produce secondary growth. This integration process is sometimes referred to as ‘climatic memory.’ While widely perceived, the physiological processes underlying this temporal integration, such as the storage and remobilization of non-structural carbohydrates (NSC), are rarely explicitly studied. This is perhaps most apparent when considering drought legacies (perturbed post-drought growth responses to climate), and the physiological mechanisms underlying these lagged responses to climatic extremes. Yet, drought legacies are likely to become more common if warming climate brings more frequent drought. To quantify the linkages between drought legacies, climate memory, and NSC, we measured tree growth (via tree ring widths) and NSC concentrations in three dominant species across the southwestern US. We analyzed these data with a hierarchical mixed effects model to evaluate the time-scales of influence of past climate (memory) on tree growth. We then evaluated the role of climate memory and the degree to which variation in NSC concentrations were related to forward-predicted growth during the hot 2011–2012 drought and subsequent 4-year recovery period. Populus tremuloides exhibited longer climatic memory compared to either Pinus edulis or Juniperus osteosperma, but following the 2011–2012 drought, P. tremuloides trees with relatively longer memory of temperature conditions showed larger (more negative) drought legacies. Conversely, P. edulis trees with longer temperature memory had smaller (less negative) drought legacies. For both species, higher NSC concentrations followed more negative (larger) drought legacies, though the relevant NSC fraction differed between P. tremuloides and P. edulis. Our results suggest that differences in tree NSC are also imprinted upon tree growth responses to climate across long time scales, which also underlie tree resilience to increasingly frequent drought events under climate change.
Austral summer transport of water vapor to the southern South American Altiplano is investigated using in situ measurements of water vapor isotopic composition collected from 1 November 2012 to 10 February 2013 on the Chajnantor Plateau in the Chilean Andes. Onset of the wet season in December was associated with an increase in mixing ratios from an average of 1500 ppmv during the winter dry season to 5400 ppmv in early December. Water vapor isotopes δD and δ18O increased from dry season averages of −235‰ and −31‰, respectively, to wet season averages of −142‰ and −17‰, reaching as high as −70‰ and −17‰, respectively. The highest water vapor δ values were close to those measured in coastal settings, suggesting little condensation during transport to the site. About 5% of the wet season data have δ values that are lower than expected for Rayleigh distillation and are associated with high relative humidity (>75%), easterly winds, and periods of low outgoing longwave radiation over the Altiplano, consistent with moistening by deep convection. The remainder of the data have δ values that are greater than expected for Rayleigh distillation, up to 250‰ above the Rayleigh curve. These data are consistent with mixing between very dry air and moist air from the boundary layer. The data show intraseasonal variability coherently linked to the position of the Bolivian high, with moist air associated with a southward displacement in the Bolivian high. The humidity over the southern Altiplano during the wet season reflects a balance among advective drying, advective moistening with little condensation, and convective moistening.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.