Interclass hybridization between soft and hard wheat (Triticum aestivum L.) results in new genetic combinations of potential value. We investigated whether interclass hybridization could improve end‐use quality of both classes. Our objectives were to analyze quality traits in a population of recombinant inbred lines (RILs) derived from a cross between the good quality soft white wheat NY6432‐18 (NY18), and good quality hard white wheat Clark's Cream (CC), identify quantitative trait loci (QTLs) for those traits, and use linkage analysis to determine which parent was contributing favorable alleles at specific QTLs for a given trait. The population was assessed for milling, protein and dough mixing, hydration, cookie and loaf traits. Traits were measured in two to six environments grown over three seasons in Ithaca, NY. The molecular map for the population contains 370 molecular markers including restiction fragment length polymorphisms (RFLPs), microsatellites, and markers derived from known function genes in wheat. Linkage groups have been located to all the wheat chromosomes except for 7D. Pinb derived from the puroindoline b gene on chromosome 5DS was the major QTL for milling, hydration, and cookie baking traits. The major QTL for mixograph peak time was at the Glu‐Dy1 marker, derived from Glu‐D1‐2 gene on chromosome 1DL. The Glu‐Ax1 and Glu‐By1 markers were QTLs for mixograph peak height and tolerance, respectively. QTLs for flour protein quantity were detected on chromosome 2B. With the exception of the hydration traits, multiple regression models included alleles from both parents. Interclass hybridization may be an underexploited wheat breeding strategy for improvement of agronomic and quality traits in wheat.
Potential novel and known QTL for race-specific all-stage and adult plant resistance to stripe rust were identified by genome-wide association mapping in the US PNW winter wheat accessions. Stripe rust (Puccinia striiformis F. sp. tritici; also known as yellow rust) is a globally devastating disease of wheat (Triticum aestivum L.) and a major threat to wheat production in the US Pacific Northwest (PNW), therefore both adult plant and all-stage resistance have been introduced into the winter wheat breeding programs in the PNW. The goal of this study was to identify quantitative trait loci (QTL) and molecular markers for these resistances through genome-wide association (GWAS) mapping in winter wheat accessions adapted to the PNW. Stripe rust response for adult plants was evaluated in naturally occurring epidemics in a total of nine environments in Washington State, USA. Seedling response was evaluated with three races under artificial inoculation in the greenhouse. The panel was genotyped with the 9K Illumina Wheat single nucleotide polymorphism (SNP) array and additional markers linked to previously reported genes and QTL for stripe rust resistance. The population was grouped into three sub-populations. Markers linked to Yr17 and previously reported QTL for stripe rust resistance were identified on chromosomes 1B, 2A, and 2B. Potentially novel QTL associated with race-specific seedling response were identified on chromosomes 1B and 1D. Potentially novel QTL associated with adult plant response were located on chromosomes 2A, 2B, 3B, 4A, and 4B. Stripe rust was reduced when multiple alleles for resistance were present. The resistant allele frequencies were different among sub-populations in the panel. This information provides breeders with germplasm and closely linked markers for stripe rust resistance to facilitate the transfer of multiple loci for durable stripe rust resistance into wheat breeding lines and cultivars.
The interaction between VRN - A1 and FR - A2 largely affect the frost tolerance of hexaploid wheat. Frost tolerance is critical for wheat survival during cold winters. Natural variation for this trait is mainly associated with allelic differences at the VERNALIZATION 1 (VRN1) and FROST RESISTANCE 2 (FR2) loci. VRN1 regulates the transition between vegetative and reproductive stages and FR2, a locus including several tandemly duplicated C-REPEAT BINDING FACTOR (CBF) transcription factors, regulates the expression of Cold-regulated genes. We identified sequence and copy number variation at these two loci among winter and spring wheat varieties and characterized their association with frost tolerance. We identified two FR-A2 haplotypes-'FR-A2-S' and 'FR-A2-T'-distinguished by two insertion/deletions and ten single nucleotide polymorphisms within the CBF-A12 and CBF-A15 genes. Increased copy number of CBF-A14 was frequently associated with the FR-A2-T haplotype and with higher CBF14 transcript levels in response to cold. Factorial ANOVAs revealed significant interactions between VRN1 and FR-A2 for frost tolerance in both winter and spring panels suggesting a crosstalk between vernalization and cold acclimation pathways. The model including these two loci and their interaction explained 32.0 and 20.7 % of the variation in frost tolerance in the winter and spring panels, respectively. The interaction was validated in a winter wheat F 4:5 population segregating for both genes. Increased VRN-A1 copy number was associated with improved frost tolerance among varieties carrying the FR-A2-T allele but not among those carrying the FR-A2-S allele. These results suggest that selection of varieties carrying the FR-A2-T allele and three copies of the recessive vrn-A1 allele would be a good strategy to improve frost tolerance in wheat.
Over time, many single, all-stage resistance genes to stripe rust (Puccinia striiformis f. sp. tritici) in wheat (Triticum aestivum L.) are circumvented by race changes in the pathogen. In contrast, high-temperature, adult-plant resistance (HTAP), which only is expressed during the adult-plant stage and when air temperatures are warm, provides durable protection against stripe rust. Our objective was to identify major quantitative trait loci (QTL) for HTAP resistance to stripe rust in the spring wheat cultivar 'Louise'. The mapping population consisted of 188 recombinant inbred lines (RIL) from a Louise (resistant) by 'Penawawa' (susceptible) cross. F(5:6) lines were evaluated for stripe rust reaction under natural infection in replicated field trials at five locations in the US Pacific Northwest in 2007 and 2008. Infection type (IT) and disease severity were recorded for each RIL 2-4 times per location. In all environments, Penawawa, the susceptible parent, was rated with an IT ranging from 6 to 8 at all growth stages evaluated. In contrast, Louise, the resistant parent, was rated with an IT of 2 or 3 across growth stages. Distribution of IT values was bimodal, indicating a single major gene was affecting the trait. The parents and RIL population were evaluated with 295 polymorphic simple sequence repeat and one single nucleotide polymorphism markers. One major QTL, designated QYrlo.wpg-2BS, associated with HTAP resistance in Louise, was detected on chromosome 2BS (LOD scores ranging from 5.5 to 62.3 across locations and years) within a 16.9 cM region flanked by Xwmc474 and Xgwm148. SSR markers associated with QYrlo.wpg-2BS are currently being used in marker-based forward breeding strategies to transfer the target region into adapted germplasm to improve the durability of resistance in resulting cultivars.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.