Bifunctional peptidylglycine alpha-amidating enzyme (alpha-AE) catalyzes the O2-dependent conversion of C-terminal glycine-extended prohormones to the active, C-terminal alpha-amidated peptide and glyoxylate. We show that alpha-AE will also catalyze the oxidative cleavage of N-acylglycines, from N-formylglycine to N-arachidonoylglycine. N-Formylglycine is the smallest amide substrate yet reported for alpha-AE. The (V/K)app for N-acylglycine amidation varies approximately 1000-fold, with the (V/K)app increasing as the acyl chain length increases. This effect is largely an effect on the KM,app; the KM,app for N-formylglycine is 23 +/- 0.88 mM, while the KM,app for N-lauroylglycine and longer chain N-acylglycines is in the range of 60-90 microM. For the amidation of N-acetylglycine, N-(tert-butoxycarbonyl)glycine, N-hexanoylglycine, and N-oleoylglycine, the rate of O2 consumption is faster than the rate of glyoxylate production. These results indicate that there must be the initial formation of an oxidized intermediate from the N-acylglycine before glyoxylate is produced. The intermediate is shown to be N-acyl-alpha-hydroxyglycine by two-dimensional 1H-13C heteronuclear multiple quantum coherence (HMQC) NMR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.