Bifunctional peptidylglycine alpha-amidating enzyme (alpha-AE) catalyzes the O2-dependent conversion of C-terminal glycine-extended prohormones to the active, C-terminal alpha-amidated peptide and glyoxylate. We show that alpha-AE will also catalyze the oxidative cleavage of N-acylglycines, from N-formylglycine to N-arachidonoylglycine. N-Formylglycine is the smallest amide substrate yet reported for alpha-AE. The (V/K)app for N-acylglycine amidation varies approximately 1000-fold, with the (V/K)app increasing as the acyl chain length increases. This effect is largely an effect on the KM,app; the KM,app for N-formylglycine is 23 +/- 0.88 mM, while the KM,app for N-lauroylglycine and longer chain N-acylglycines is in the range of 60-90 microM. For the amidation of N-acetylglycine, N-(tert-butoxycarbonyl)glycine, N-hexanoylglycine, and N-oleoylglycine, the rate of O2 consumption is faster than the rate of glyoxylate production. These results indicate that there must be the initial formation of an oxidized intermediate from the N-acylglycine before glyoxylate is produced. The intermediate is shown to be N-acyl-alpha-hydroxyglycine by two-dimensional 1H-13C heteronuclear multiple quantum coherence (HMQC) NMR.
Peptidyl α-hydroxylating monooxygenase (PHM) functions in vivo towards the biosynthesis of α-amidated peptide hormones in mammals and insects. PHM is a potential target for the development of inhibitors as drugs for the treatment of human disease and as insecticides for the management of insect pests. We show here that relatively simple ground state analogs of the PHM substrate hippuric acid (C 6 H 5 -CO-NH-CH 2 -COOH) inhibit the enzyme with K i values as low as 0.5 μM. Substitution of sulfur atom(s) into the hippuric acid analog increases the affinity of PHM for the inhibitor. Replacement of the acetylglycine moiety, -CO-NH-CH 2 -COOH with an S-(thioacetyl)thioglycolic acid moiety, -CS-S-CH 2 -COOH, yields compounds with the highest PHM affinity. Both S-(2-phenylthioacetyl)thioglycolate and S-(4-ethylthiobenzoyl)thioglycolic acid inhibit the proliferation of cultured human prostate cancer cells at concentrations >100-fold excess of their respective K i values. Comparison of K i values between mammalian PHM and insect PHM shows differences in potency suggesting that a PHM-based insecticide with limited human toxicity can be developed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.