Tau hyperphosphorylation, mostly at serine (Ser) or threonine (Thr) residues, plays a key role in the pathogenesis of Alzheimer disease (AD) and other tauopathies. Rodent studies show similar hyperphosphorylation in the developing brain, which may be involved in regulating axonal growth and plasticity, but detailed human studies are lacking. Here, we examine tau phosphorylation by immunohistochemistry and immunoblotting in human fetal and adult autopsy brain tissue. Of the 20 cases with sufficient tissue preservation, 18 (90%) showed positive staining for S214 (pSer214), with the majority also positive for CP13 (pSer202), and PHF-1 (pSer396/pSer404). AT8 (pSer202/pThr205) and RZ3 (pThr231) were largely negative while PG5 (pSer409) was negative in all cases. Immunoblotting showed tau monomers with a similar staining pattern. We also observed phospho-tau aggregates in the fetal molecular layer, staining positively for S214, CP13, and PHF1 and negative for thioflavin S. These corresponded to high-molecular weight (∼150 kD) bands seen on Western blots probed with S214, PHF1, and PG5. We therefore conclude that fetal phosphorylation overlaps with AD in some residues, while others (e.g. T231, S409) appear to be unique to AD, and that tau is capable of forming nontoxic aggregates in the developing brain. These findings suggest that the fetal brain is resilient to formation of toxic aggregates, the mechanism for which may yield insights into the pathogenesis of tau aggregation and toxicity in the aging brain.
Domestic cats (Felis catus) are known to develop cognitive impairment, and several small series have demonstrated both β‐amyloid and tau aggregation, including neurofibrillary tangles, with age, making them a promising physiologic model of Alzheimer disease (AD). We therefore report the largest feline autopsy cohort to date of 32 cats ranging from 1.5 to 22.1 years of age, with systematic neuropathologic assessment according to NIA‐Alzheimer's Association Criteria. Formalin‐fixed paraffin‐embedded tissue sections of brain were obtained retrospectively from cats autopsied at the Iowa State College of Veterinary Medicine. We found β‐amyloid staining, predominantly in Cortical Layers IV and VI in 27 of the 32 cats used in the study, with four of these animals showing tau‐positive tangles and neuropil threads. In 75% of these cases (3/4), tau deposition was limited to entorhinal cortex, while one case showed diffuse positive staining throughout the hippocampal formation and neocortex. This last case showed positive staining for all phospho‐tau‐specific antibodies tested, similar to the pattern seen in human AD. Interestingly, we saw a higher ratio of pretangles to tangles than that in human AD, and none of the cases showed neuritic plaques on any of the stains used. Our findings indicate that aging domestic cats spontaneously develop both β‐amyloid and tau pathology similar, but not identical to that seen in human AD. This suggests that the domestic cat may serve as a potential model for mechanistic and therapeutic AD studies, but that additional research is needed to identify differences between the neuropathology of aging in humans and felines.
The Src family non-receptor tyrosine kinase Fyn has been implicated in neurodegeneration of Alzheimer’s disease through interaction with amyloid β (Aβ). However, the role of Fyn in the pathogenesis of primary tauopathies such as FTDP-17, where Aβ plaques are absent, is poorly understood. In the current study, we used AAV2/8 vectors to deliver tau P301L to the brains of WT and Fyn KO mice, generating somatic transgenic tauopathy models with the presence or absence of Fyn. Although both genotypes developed tau pathology, Fyn KO developed fewer neurofibrillary tangles on Bielschowsky and Thioflavin S stained sections and showed lower levels of phosphorylated tau. In addition, tau P301L -induced behavior abnormalities and depletion of synaptic proteins were not observed in the Fyn KO model. Our work provides evidence for Fyn being a critical protein in the disease pathogenesis of FTDP-17.
Although best known for its role in Alzheimer's disease (AD), tau is expressed throughout brain development, although it remains unclear when and which cell types this expression occurs and how it affects disease states in both fetal and neonatal periods. We thus sought to map tau mRNA and protein expression in the developing human brain at the cellular level using a combination of existing single-cell RNA sequencing (sc-RNAseq) data, RNA in situ hybridization (RNAscope), and immunohistochemistry (IHC). Using sc-RNAseq, we found that tau mRNA expression begins in radial glia but increases dramatically as migrating neuronal precursors mature. Specifically, TBR1 1 maturing neurons and SYN 1 mature neurons showed significantly higher mRNA expression than GFAP 1 /NES 1 radial glia or TBR2 1 intermediate progenitors. By RNAscope, we found Significance Statement Tau is a mediator of neurotoxicity across multiple neurodegenerative diseases, including Alzheimer's disease (AD) and chronic traumatic encephalopathy (CTE). With the recent failure of b-amyloid-targeted therapies in AD to improve cognitive function, there is increasing interest in tau targeted therapies. Tau is expressed throughout brain development, but the function and normal developmental expression remains unclear. Here, we demonstrate that tau expression begins early during neuronal maturation in both human fetal brain and induced pluripotent stem cell (iPSC)-derived cortical organoids. This work forms the basis for future research into the developmental regulation of tau expression, which may provide future tau-related therapeutic targets.
Tau phosphorylation, aggregation, and toxicity are the main drivers of neurodegeneration in multiple tauopathies, including Alzheimer’s disease (AD) and frontotemporal lobar degeneration with tau. Although aggregation and amyloid formation are often assumed to be synonymous, the ability of tau aggregates in different diseases to form amyloids in vivo has not been systematically studied. We used the amyloid dye Thioflavin S to look at tau aggregates in mixed tauopathies such as AD and primary age-related tauopathy, as well as pure 3R or 4R tauopathies such as Pick’s disease, progressive supranuclear palsy, and corticobasal degeneration. We found that aggregates of tau protein only form thioflavin-positive amyloids in mixed (3R/4R), but not pure (3R or 4R), tauopathies. Interestingly, neither astrocytic nor neuronal tau pathology was thioflavin-positive in pure tauopathies. As most current positron emission tomography tracers are based on thioflavin derivatives, this suggests that they may be more useful for differential diagnosis than the identification of a general tauopathy. Our findings also suggest that thioflavin staining may have utility as an alternative to traditional antibody staining for distinguishing between tau aggregates in patients with multiple pathologies and that the mechanisms for tau toxicity may differ between different tauopathies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.