Solar energy is readily available in most climates and can be used for water purification. However, solar disinfection of drinking water mostly relies on ultraviolet light, which represents only 4% of the total solar energy, and this leads to a slow treatment speed. Therefore, the development of new materials that can harvest visible light for water disinfection, and so speed up solar water purification, is highly desirable. Here we show that few-layered vertically aligned MoS (FLV-MoS) films can be used to harvest the whole spectrum of visible light (∼50% of solar energy) and achieve highly efficient water disinfection. The bandgap of MoS was increased from 1.3 to 1.55 eV by decreasing the domain size, which allowed the FLV-MoS to generate reactive oxygen species (ROS) for bacterial inactivation in the water. The FLV-MoS showed a ∼15 times better log inactivation efficiency of the indicator bacteria compared with that of bulk MoS, and a much faster inactivation of bacteria under both visible light and sunlight illumination compared with the widely used TiO. Moreover, by using a 5 nm copper film on top of the FLV-MoS as a catalyst to facilitate electron-hole pair separation and promote the generation of ROS, the disinfection rate was increased a further sixfold. With our approach, we achieved water disinfection of >99.999% inactivation of bacteria in 20 min with a small amount of material (1.6 mg l) under simulated visible light.
Global surface temperature is predicted to increase by 1.4-5.8 1C by the end of this century. However, the impacts of this projected warming on soil C balance and the C budget of terrestrial ecosystems are not clear. One major source of uncertainty stems from warming effects on soil microbes, which exert a dominant influence on the net C balance of terrestrial ecosystems by controlling organic matter decomposition and plant nutrient availability. We, therefore, conducted an experiment in a tallgrass prairie ecosystem at the Great Plain Apiaries (near Norman, OK) to study soil microbial responses to temperature elevation of about 2 1C through artificial heating in clipped and unclipped field plots. While warming did not induce significant changes in net N mineralization, soil microbial biomass and respiration rate, it tended to reduce extractable inorganic N during the second and third warming years, likely through increasing plant uptake. In addition, microbial substrate utilization patterns and the profiles of microbial phospholipid fatty acids (PLFAs) showed that warming caused a shift in the soil microbial community structure in unclipped subplots, leading to the relative dominance of fungi as evidenced by the increased ratio of fungal to bacterial PLFAs. However, no warming effect on soil microbial community structure was found in clipped subplots where a similar scale of temperature increase occurred. Clipping also significantly reduced soil microbial biomass and respiration rate in both warmed and unwarmed plots. These results indicated that warming-led enhancement of plant growth rather than the temperature increase itself may primarily regulate soil microbial response. Our observations show that warming may increase the relative contribution of fungi to the soil microbial community, suggesting that shifts in the microbial community structure may constitute a major mechanism underlying warming acclimatization of soil respiration.
Photochemical reactions contribute to the transformation of contaminants and biogeochemically important substrates in environmental aquatic systems. Recent research has demonstrated that halogen radicals (e.g., Cl, Br, Cl, BrCl, Br) impact photochemical processes in sunlit estuarine and coastal waters rich in halides (e.g., chloride, Cl, and bromide, Br). In addition, halogen radicals participate in contaminant degradation in some engineered processes, including chlorine photolysis for drinking water treatment and several radical-based processes for brine and wastewater treatment. Halogen radicals react selectively with substrates (with bimolecular rate constants spanning several orders of magnitude) and via several potential chemical mechanisms. Consequently, their role in photochemical processes remains challenging to assess. This review presents an integrative analysis of the chemistry of halogen radicals and their contribution to aquatic photochemistry in sunlit surface waters and engineered treatment systems. We evaluate existing data on the generation, speciation, and reactivity of halogen radicals, as well as experimental and computational approaches used to obtain this data. By evaluating existing data and identifying major uncertainties, this review provides a basis to assess the impact of halogen radicals on photochemical processes in both saline surface waters and engineered treatment systems.
Health-relevant microorganisms present in natural surface waters and engineered treatment systems that are exposed to sunlight can be inactivated by a complex set of interacting mechanisms. The net impact of sunlight depends on the solar spectral irradiance, the susceptibility of the specific microorganism to each mechanism, and the water quality; inactivation rates can vary by orders of magnitude depending on the organism and environmental conditions. Natural organic matter (NOM) has a large influence, as it can attenuate radiation and thus decrease inactivation by endogenous mechanisms. Simultaneously NOM sensitizes the formation of reactive intermediates that can damage microorganisms via exogenous mechanisms. To accurately predict inactivation and design engineered systems that enhance solar inactivation, it is necessary to model these processes, although some details are not yet sufficiently well understood. In this critical review, we summarize the photo-physics, -chemistry, and -biology that underpin sunlight-mediated inactivation, as well as the targets of damage and cellular responses to sunlight exposure. Viruses that are not susceptible to exogenous inactivation are only inactivated if UVB wavelengths (280-320 nm) are present, such as in very clear, open waters or in containers that are transparent to UVB. Bacteria are susceptible to slightly longer wavelengths. Some viruses and bacteria (especially Gram-positive) are susceptible to exogenous inactivation, which can be initiated by visible as well as UV wavelengths. We review approaches to model sunlightmediated inactivation and illustrate how the environmental conditions can dramatically shift the inactivation rate of organisms. The implications of this mechanistic understanding of solar inactivation are discussed for a range of applications, including recreational water quality, natural treatment systems, solar disinfection of drinking water (SODIS), and enhanced inactivation via the use of sensitizers and photocatalysts. Finally, priorities for future research are identified that will further our understanding of the key role that sunlight disinfection plays in natural systems and the potential to enhance this process in engineered systems. Environmental signicanceThe manuscript provides a comprehensive synthesis of the current understanding of the mechanisms by which sunlight causes damage to microorganisms, ultimately leading to inactivation. This topic is important for understanding the fate and transport of microbiological contaminants in all sunlit surface waters, including fresh and marine ecosystems, as well as engineered treatment systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.