Islet transplantation to treat type 1 diabetes (T1D) has shown varied long-term success, due in part to insufficient blood supply to maintain the islets. In the current study, collagen and collagen:chitosan (10:1) hydrogels, +/- circulating angiogenic cells (CACs), were compared for their ability to produce a pro-angiogenic environment in a streptozotocin-induced mouse model of T1D. Initial characterization showed that collagen-chitosan gels were mechanically stronger than the collagen gels (0.7kPa vs. 0.4kPa elastic modulus, respectively), had more cross-links (9.2 vs. 7.4/µm2), and were degraded more slowly by collagenase. After gelation with CACs, live/dead staining showed greater CAC viability in the collagen-chitosan gels after 18h compared to collagen (79% vs. 69%). In vivo, collagen-chitosan gels, subcutaneously implanted for up to 6 weeks in a T1D mouse, showed increased levels of pro-angiogenic cytokines over time. By 6 weeks, anti-islet cytokine levels were decreased in all matrix formulations ± CACs. The 6-week implants demonstrated increased expression of VCAM-1 in collagen-chitosan implants. Despite this, infiltrating vWF+ and CXCR4+ angiogenic cell numbers were not different between the implant types, which may be due to a delayed and reduced cytokine response in a T1D versus non-diabetic setting. The mechanical, degradation and cytokine data all suggest that the collagen-chitosan gel may be a suitable candidate for use as a pro-angiogenic ectopic islet transplant site.
Although many regenerative cell therapies are being developed to replace or regenerate ischaemic muscle, the lack of vasculature and poor persistence of the therapeutic cells represent major limiting factors to successful tissue restoration. In response to ischaemia, stromal cellderived factor-1 (SDF-1) is up-regulated by the affected tissue to stimulate stem cell-mediated regenerative responses. Therefore, we encapsulated SDF-1 into alginate microspheres and further incorporated these into an injectable collagen-based matrix in order to improve local delivery. Microsphere-matrix impregnation reduced the time for matrix thermogelation, and also increased the viscosity reached. This double-incorporation prolonged the release of SDF-1, which maintained adhesive and migratory bioactivity, attributed to chemotaxis in response to SDF-1. In vivo, treatment of ischaemic hindlimb muscle with microsphere-matrix led to increased mobilisation of bone marrow-derived progenitor cells, and also improved recruitment of angiogenic cells expressing the SDF-1 receptor (CXCR4) from bone marrow and local tissues. Both matrix and SDF-1-releasing matrix were successful at restoring perfusion, but SDF-1 treatment appeared to play an earlier role, as evidenced by arterioles that are phenotypically older and by increased angiogenic cytokine production, stimulating the generation of a qualitative microenvironment for a rapid and therefore more effi cient regeneration. These results support the release of implanted SDF-1 as a promising method for enhancing progenitor cell responses and restoring perfusion to ischaemic tissues via neovascularisation.
Biomaterial-guided regeneration represents a novel approach for the treatment of myopathies. Revascularisation and the intramuscular extracellular matrix are important factors in stimulating myogenesis and regenerating muscle damaged by ischaemia. In this study, we used an injectable collagen matrix, enhanced with sialyl Lewis X (sLe X), to guide skeletal muscle differentiation and regeneration. The elastic properties of collagen and sLe X-collagen matrices were similar to those of skeletal muscle, and culture of pluripotent mESCs on the matrices promoted their differentiation into myocyte-like cells expressing Pax3, MHC3, myogenin and Myf5. The regenerative properties of matrices were evaluated in ischaemic mouse hind-limbs. Treatment with the sLe X-matrix augmented the production of myogenic-mediated factors insulin-like growth factor (IGF)-1, and IGF binding protein-2 and-5 after 3 days. This was followed by muscle regeneration, including a greater number of regenerating myofibres and increased transcription of Six1, M-cadherin, myogenin and Myf5 after 10 days. Simultaneously, the sLe X-matrix promoted increased mobilisation and engraftment of bone marrow-derived progenitor cells, the development of larger arterioles and the restoration of tissue perfusion. Both matrix treatments tended to reduce maximal forces of ischaemic solei muscles, but sLe X-matrix lessened this loss of force and also prevented muscle fatigue. Only sLe X-matrix treatment improved mobility of mice on a treadmill. Together, these results suggest a novel approach for regenerative myogenesis, whereby treatment only with a matrix, which possesses an inherent ability to guide myogenic differentiation of pluripotent stem cells, can enhance the endogenous vascular and myogenic regeneration of skeletal muscle, thus holding promise for future clinical use.
Injectable hydrogels are increasingly being developed for biomedical applications due to their ability to be delivered in a minimally invasive manner. One potential use for such materials is in cell delivery for cardiac regeneration. While the materials' properties are often characterized, how these properties (and in particular gelation) are affected by the addition of the therapeutic agent(s) they are designed to deliver is often overlooked. The aim of this study was to examine the interactive effects between collagen-based hydrogels and different additives (cells and microspheres). The results demonstrated that the incorporation of either cells or microspheres to a collagen hydrogel decreased its gelation time and increased its viscosity. Increased concentrations of the EDC/NHS cross-linker resulted in greater loss of cell viability. However, it was found that this cell loss could be minimized by delivering cells with the cross-linker scavenger glycine. A better understanding of how materials and cells (and other additives) respond to each other will help towards the goal of improving scaffolds being developed for regenerative therapy.
Islet transplantation is an emerging strategy for treating patients with type 1 diabetes mellitus. Although the proof of concept for cellular replacement therapy in diabetes has been firmly established, vascularity of the transplant site and the long-term survival and function of transplanted islets remains suboptimal. In the present study, human circulating angiogenic cells (CACs) and porcine islet cells embedded in collagen-chitosan hydrogels, with and without laminin, were investigated as potential engineered biomaterials for the treatment of type 1 diabetes. Hydrogels were evaluated in vitro for their physical properties (compression, degradation, porosity and wettability) and cell compatibility. Increasing the chitosan content in the collagen-based hydrogel resulted in increased stiffness (p ≤ 0.04) and time to gelation (p < 0.001), but reduced porosity (from 22-28% to 16-19%). The material design formulations (10:1 vs 20:1 collagen:chitosan ratio) directly affected the cell properties. The viability of both human CACs and porcine islets embedded in the 20:1 collagen-chitosan matrix was higher at 24 h compared to the 10:1 formulation. For islet function, glucose stimulation indices for the 20:1 formulation at 24 h compared favourably with values reported in the literature, more so than the 10:1 formulations. While laminin improved the short-term viability of CACs, its presence did not confer any benefit to islet viability or function. Overall, the design features outlined in this study provided the degree of control required to establish viable tissue with potential for islet transplantation and neovascularization. Copyright © 2013 John Wiley & Sons, Ltd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.