Lipid rafts are microdomains of the plasma membrane enriched in cholesterol and sphingolipids, and play an important role in the initiation of many pharmacological agent-induced signaling pathways and toxicological effects. The structure of lipid rafts is dynamic, resulting in an ever-changing content of both lipids and proteins. Cholesterol, as a major component of lipid rafts, is critical for the formation and configuration of lipid rafts microdomains, which provide signaling platforms capable of activating both pro-apoptotic and anti-apoptotic signaling pathways. A change of cholesterol level can result in lipid rafts disruption and activate or deactivate raft-associated proteins, such as death receptor proteins, protein kinases, and calcium channels. Several anti-cancer drugs are able to suppress growth and induce apoptosis of tumor cells through alteration of lipid raft contents via disrupting lipid raft integrity.
Purpose. Design, implement, and evaluate a 6-week social marketing campaign (SMC) to raise awareness of obesity and increase involvement in type 2 diabetes prevention, nutrition, and fitness programs offered by the Brooklyn Partnership to Drive Down Diabetes (BP3D) in two low-income, urban communities.Design. This was a nonexperimental, formative research, mixed-methods study.Setting. The study took place in Central Brooklyn and East New York, two of the most impoverished, high-need communities in New York City.Subjects. Participants were black and Hispanic adults, who were 18þ years of age and residing in the priority communities.Intervention. Advertisements in English and Spanish encouraging healthier eating habits and advocating for better food options were displayed on New York City bus shelters, buses, and subway cars operating in the priority communities. Social media, Web sites, and print material were used to promote the campaign message.Measures. Social media metrics and a street intercept postsurvey informed the campaign's success.Analysis. Quantitative data were analyzed using descriptive statistics. Results. One hundred advertisements in English and Spanish were posted. After an 18-month followup, there were over 11,000 visits to the Facebook page. Results from the postsurvey (n ¼ 171) suggest the SMC motivated participants who recognized the advertisements to improve their health behaviors.Conclusion. A multifaceted SMC that coincides with prevention programs can effectively raise attention to health issues and activities in a high-risk population at a relatively low cost. (Am J Health Promot 0000;00[0]:000-000.)
Ultraviolet light (UV) inhibits translation initiation through activation of kinases that phosphorylate the alpha-subunit of eukaryotic initiation factor 2 (eIF2alpha). Two eIF2alpha kinases, PERK and GCN2, are known to phosphorylate the Serine-51 of eIF2alpha in response to UV-irradiation. In this report, we present evidence that phosphorylation of eIF2alpha plays a role in UV-induced apoptosis. Our data show that wild-type mouse embryo fibroblasts (MEF(s/s)) are less sensitive to UV-induced apoptosis than MEF(A/A) cells in which the phosphorylation site, Ser51, of eIF2alpha is replaced with a non-phosphorylatable Ala (Ser51Ala). PARP expression in MEF(A/A) cells is reduced without being cleaved after UV-irradiation. In contrast, PARP is cleaved without a significant decrease in parental PARP in MEF(S/S) cells after UV-irradiation. Our data also show that MEF(GCN2-/-) cells, in which GCN2 is knocked out, are more sensitive to UV-irradiation, agreeing with the observation from MEF(A/A) cells. However, MEF(PERK-/-) cells, in which PERK is knocked out, are less sensitive to UV-irradiation. In addition, MCF-7-PERKDeltaC cells, which are stably transfected with a kinase domain deleted mutant of PERK (PERKDeltaC), are more resistant to UV-induced apoptosis than parental MCF-7 cells. Overexpression of wild-type PERK sensitizes MCF-7 cells to UV-induced apoptosis without directly inducing cell death. These results suggest that the level of eIF2alpha phosphorylation impacts PARP expression upon UV-irradiation. The eIF2alpha kinases may mediate UV-induced apoptosis via an eIF2alpha dependent or independent signaling pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.