Ultraviolet light (UV) inhibits translation initiation through activation of kinases that phosphorylate the alpha-subunit of eukaryotic initiation factor 2 (eIF2alpha). Two eIF2alpha kinases, PERK and GCN2, are known to phosphorylate the Serine-51 of eIF2alpha in response to UV-irradiation. In this report, we present evidence that phosphorylation of eIF2alpha plays a role in UV-induced apoptosis. Our data show that wild-type mouse embryo fibroblasts (MEF(s/s)) are less sensitive to UV-induced apoptosis than MEF(A/A) cells in which the phosphorylation site, Ser51, of eIF2alpha is replaced with a non-phosphorylatable Ala (Ser51Ala). PARP expression in MEF(A/A) cells is reduced without being cleaved after UV-irradiation. In contrast, PARP is cleaved without a significant decrease in parental PARP in MEF(S/S) cells after UV-irradiation. Our data also show that MEF(GCN2-/-) cells, in which GCN2 is knocked out, are more sensitive to UV-irradiation, agreeing with the observation from MEF(A/A) cells. However, MEF(PERK-/-) cells, in which PERK is knocked out, are less sensitive to UV-irradiation. In addition, MCF-7-PERKDeltaC cells, which are stably transfected with a kinase domain deleted mutant of PERK (PERKDeltaC), are more resistant to UV-induced apoptosis than parental MCF-7 cells. Overexpression of wild-type PERK sensitizes MCF-7 cells to UV-induced apoptosis without directly inducing cell death. These results suggest that the level of eIF2alpha phosphorylation impacts PARP expression upon UV-irradiation. The eIF2alpha kinases may mediate UV-induced apoptosis via an eIF2alpha dependent or independent signaling pathway.
Aims To investigate the role of nitric oxide synthase and intracellular free zinc ion (Zn2+) in regulation of ultraviolet B light (UVB)-induced cell damage and apoptosis. Main methods Real time confocal microscopy measurement was used to determine the changes of intracellular free zinc concentration under different conditions. Cell apoptotic death was determined using fluorescein isothiocyanate (FITC) conjugated-annexin V (ANX5)/PI labeling followed by flow cytometry. Western analysis was used to determine cell apoptosis and eNOS uncoupling. Key findings UVB induced an elevation of Zn2+ within 2 min of exposure. The UVB-induced intracellular Zn2+ elevation was dependent on the increase of constitutive nitric oxide synthase (cNOS) activity and production of superoxide. Removal of Zn2+ with a lower concentration (<25 µM) of N,N,N',N'-tetrakis (2-pyridylmethyl) ethylenediamine (TPEN), a Zn2+-specific chelator, did not induce cell death or prevent cells from UVB-induced apoptosis. However, a higher [TPEN] (> 50 µM) was cytotoxic to cells, but prevented cells from further UVB-induced apoptosis. The higher [TPEN] also induced cNOS uncoupling. Furthermore, treating the cells with a membrane permeable superoxide dismutase (PEG-SOD) inhibited Zn2+ release and reduced apoptotic cell death after UVB treatment. The results demonstrated a complex and dynamic regulation of UVB-induced cell damage. Significance Our findings not only advance our understanding of the correlations between cNOS activation and Zn elevation, but also elucidated the role of cNOS in regulation of oxidative stress and apoptosis upon UVB-irradiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.