Thimerosal is a preservative that has been used in manufacturing vaccines since the 1930s. Reports have indicated that infants can receive ethylmercury (in the form of thimerosal) at or above the U.S. Environmental Protection Agency guidelines for methylmercury exposure, depending on the exact vaccinations, schedule, and size of the infant. In this study we compared the systemic disposition and brain distribution of total and inorganic mercury in infant monkeys after thimerosal exposure with those exposed to MeHg. Monkeys were exposed to MeHg (via oral gavage) or vaccines containing thimerosal (via intramuscular injection) at birth and 1, 2, and 3 weeks of age. Total blood Hg levels were determined 2, 4, and 7 days after each exposure. Total and inorganic brain Hg levels were assessed 2, 4, 7, or 28 days after the last exposure. The initial and terminal half-life of Hg in blood after thimerosal exposure was 2.1 and 8.6 days, respectively, which are significantly shorter than the elimination half-life of Hg after MeHg exposure at 21.5 days. Brain concentrations of total Hg were significantly lower by approximately 3-fold for the thimerosal-exposed monkeys when compared with the MeHg infants, whereas the average brain-to-blood concentration ratio was slightly higher for the thimerosal-exposed monkeys (3.5 ± 0.5 vs. 2.5 ± 0.3). A higher percentage of the total Hg in the brain was in the form of inorganic Hg for the thimerosal-exposed monkeys (34% vs. 7%). The results indicate that MeHg is not a suitable reference for risk assessment from exposure to thimerosal-derived Hg. Knowledge of the toxicokinetics and developmental toxicity of thimerosal is needed to afford a meaningful assessment of the developmental effects of thimerosal-containing vaccines.
The broad-based legalization of cannabis use has created a strong need to understand its impact on human health and behavior. The risks that may be associated with cannabis use, particularly for sensitive subgroups such as pregnant women, are difficult to define because of a paucity of dose-response data and the recent increase in cannabis potency. Although there is a large body of evidence detailing the mode of action of Δ9‐tetrahydrocannabinol (THC) in adults, little work has focused on understanding how cannabis use during pregnancy may impact the development of the fetal nervous system and whether additional plant-derived cannabinoids might participate. This manuscript presents an overview of the historical and contemporary literature focused on the mode of action of THC in the developing brain, comparative pharmacokinetics in both pregnant and nonpregnant model systems and neurodevelopmental outcomes in exposed offspring. Despite growing public health significance, pharmacokinetic studies of THC have focused on nonpregnant adult subjects and there are few published reports on disposition parameters during pregnancy. Data from preclinical species show that THC readily crosses the placenta although fetal exposures appear lower than maternal exposures. The neurodevelopmental data in human and preclinical species suggest that prenatal exposure to THC may lead to subtle, persistent changes in targeted aspects of higher-level cognition and psychological well-being. There is an urgent need for well-controlled studies in humans and preclinical models on THC as a developmental neurotoxicant. Until more information is available, pregnant women should not assume that using cannabis during pregnancy is safe.
Domoic acid (DA), the cause of Amnesic Shellfish Poisoning, is a naturally occurring marine biotoxin that is usually produced by the microscopic algae Pseudo-nitzschia. As is the case for other types of toxic algae, Pseudo-nitzschia outbreaks are becoming more frequent. Acute high-dose symptomology in humans includes vomiting, cramping, coma and death as well as neurological effects such as hallucinations, confusion and memory loss. Experimental studies and medical reports have collectively shown that DA exposure primarily affects the hippocampal regions of the brain and is associated with seizures and the disruption of cognitive processes. The neurobehavioral signature of DA is unique in that it includes transient and permanent changes in memory function that resemble human antegrade amnesia. Experimental studies with adult nonhuman primates have established that DA is a dose-dependent emetic that produces clinical and neuropathological changes consistent with excitotoxicity. Behavioral evaluations of treated rodents have shown that hyperactivity and stereotypical scratching are the first functional markers of toxicity. Mid-dose treatment is associated with memory impairment and behavioral hyperreactivity, suggesting changes in arousal and/or emotionality. At higher doses, DA treatment results in frank neurotoxicity that is characterized by seizures, status epilepticus and death in treated animals. The route of DA exposure is important and influences the severity of effects; intraperitoneal and intravenous treatments produce classic signs of poisoning at significantly lower doses than oral exposure. While developmental studies are few, DA readily crosses the placenta and enters the fetal brain. Domoic acid is not associated with congenital dysmorphia but is linked to persistent changes in motor behavior and cognition in exposed offspring. Comparative research suggests that functional losses associated with DA can be persistent and injuries to the CNS can be progressive. Long-term studies will be necessary to accurately track the expression of DA-related injury, in health and behavior, over the life-span.
Cortisol is a well-known glucocorticoid that can be used as a biomarker of hypothalamic-pituitary-adrenocortical activity. To explore basal cortisol physiology during pregnancy and infancy in Macaca nemestrina monkeys, hair was collected from a convenience sample of 22 healthy mother-infant dyads. Adult females were housed in pairs as part of a small breeding colony at the Washington National Primate Research Center and infants were reared in a specialized nursery. Maternal samples were collected from females during a pregnancy-detection ultrasound and immediately following labor and delivery. Infant samples were collected at birth, 20 days, 4, 6, 8 and 10 mos. of age. Hair cortisol concentrations (HCCs) were determined using an enzyme immunoassay in washed and ground hair samples. Like human mothers, macaque HCCs rose during pregnancy (paired t=5.8, df=16, p<.001). Maternal HCCs at pregnancy-detection (114.2 ± 12.07 picogram/milligram (pg/mg)) were highly predictive of maternal HCCs at delivery (144.8 ± 13.60 pg/mg), suggesting a trait-like quality (r=0.90, P<.001). When maternal HCCs were viewed on a continuum, the absolute rise in cortisol over the course of pregnancy was significantly related to newborn HCCs (r=0.55, P=.02). Infant birth HCCs (1027.4.3 ± 97.95 pg/mg) were seven times higher than maternal HCCs at delivery (paired t = 19.1, df = 16, P<0.001). Higher birth HCCs were strongly associated with larger decreases in infant hair cortisol until 6 months of postnatal age when infant HCCs converged on values indistinguishable from adults. Overall, study results demonstrate a marked degree of fetal cortisol exposure during the latter part of gestation and suggest that the rise in maternal cortisol over pregnancy may play an influential role on HCCs in the newborn.
The gastroesophageal barrier function of the LES can be overcome during times when the inspiratory thoraco-abdominal pressure gradient is increased, leading to reflux of gastric juice into the esophagus. This implies that exaggerated ventilatory effort, as occurs with exercise or in respiratory disease, can result in gastroesophageal reflux.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.