Thimerosal is a preservative that has been used in manufacturing vaccines since the 1930s. Reports have indicated that infants can receive ethylmercury (in the form of thimerosal) at or above the U.S. Environmental Protection Agency guidelines for methylmercury exposure, depending on the exact vaccinations, schedule, and size of the infant. In this study we compared the systemic disposition and brain distribution of total and inorganic mercury in infant monkeys after thimerosal exposure with those exposed to MeHg. Monkeys were exposed to MeHg (via oral gavage) or vaccines containing thimerosal (via intramuscular injection) at birth and 1, 2, and 3 weeks of age. Total blood Hg levels were determined 2, 4, and 7 days after each exposure. Total and inorganic brain Hg levels were assessed 2, 4, 7, or 28 days after the last exposure. The initial and terminal half-life of Hg in blood after thimerosal exposure was 2.1 and 8.6 days, respectively, which are significantly shorter than the elimination half-life of Hg after MeHg exposure at 21.5 days. Brain concentrations of total Hg were significantly lower by approximately 3-fold for the thimerosal-exposed monkeys when compared with the MeHg infants, whereas the average brain-to-blood concentration ratio was slightly higher for the thimerosal-exposed monkeys (3.5 ± 0.5 vs. 2.5 ± 0.3). A higher percentage of the total Hg in the brain was in the form of inorganic Hg for the thimerosal-exposed monkeys (34% vs. 7%). The results indicate that MeHg is not a suitable reference for risk assessment from exposure to thimerosal-derived Hg. Knowledge of the toxicokinetics and developmental toxicity of thimerosal is needed to afford a meaningful assessment of the developmental effects of thimerosal-containing vaccines.
An important public health challenge has been the need to protect children's health. To accomplish this goal, the scientific community needs scientifically based child-specific risk assessment methods. Critical to their development is the need to understand mechanisms underlying children's sensitivity to environmental toxicants. Risk is defined as the probability of adverse outcome and when applied to environmental risk assessment is usually defined as a function of both toxicity and exposure. To adequately evaluate the potential for enhanced health risks during development, both child-specific factors affecting toxicity and exposure need to be considered. In the first section of this article, example mechanisms of susceptibility relevant for toxicity assessment are identified and discussed. In the second section, examples of exposure factors that help define children's susceptibility are presented. Examples of pesticide research from the newly funded Child Health Center at the University of Washington will be given for illustration. The final section discusses the importance of putting these considerations of children's susceptibility into an overall framework for ascertaining relevancy for human risk assessment. Images Figure 1 Figure 3 Figure 4 Figure 5 Figure 6
The broad-based legalization of cannabis use has created a strong need to understand its impact on human health and behavior. The risks that may be associated with cannabis use, particularly for sensitive subgroups such as pregnant women, are difficult to define because of a paucity of dose-response data and the recent increase in cannabis potency. Although there is a large body of evidence detailing the mode of action of Δ9‐tetrahydrocannabinol (THC) in adults, little work has focused on understanding how cannabis use during pregnancy may impact the development of the fetal nervous system and whether additional plant-derived cannabinoids might participate. This manuscript presents an overview of the historical and contemporary literature focused on the mode of action of THC in the developing brain, comparative pharmacokinetics in both pregnant and nonpregnant model systems and neurodevelopmental outcomes in exposed offspring. Despite growing public health significance, pharmacokinetic studies of THC have focused on nonpregnant adult subjects and there are few published reports on disposition parameters during pregnancy. Data from preclinical species show that THC readily crosses the placenta although fetal exposures appear lower than maternal exposures. The neurodevelopmental data in human and preclinical species suggest that prenatal exposure to THC may lead to subtle, persistent changes in targeted aspects of higher-level cognition and psychological well-being. There is an urgent need for well-controlled studies in humans and preclinical models on THC as a developmental neurotoxicant. Until more information is available, pregnant women should not assume that using cannabis during pregnancy is safe.
Background: Up to 65% of untreated infants suffering from moderate to severe hypoxic-ischemic encephalopathy (HIE) are at risk of death or major disability. Therapeutic hypothermia (HT) reduces this risk to approximately 50% (number needed to treat: 7-9). Erythropoietin (Epo) is a neuroprotective treatment that is promising as an adjunctive therapy to decrease HIE-induced injury because Epo decreases apoptosis, inflammation, and oxidative injury and promotes glial cell survival and angiogenesis. We hypothesized that HT and concurrent Epo will be safe and effective, improve survival, and reduce moderate-severe cerebral palsy (CP) in a term nonhuman primate model of perinatal asphyxia. Methodology: Thirty-five Macacanemestrina were delivered after 15-18 min of umbilical cord occlusion (UCO) and randomized to saline (n = 14), HT only (n = 9), or HT+Epo (n = 12). There were 12 unasphyxiated controls. Epo (3,500 U/kg × 1 dose followed by 3 doses of 2,500 U/kg, or Epo 1,000 U/kg/day × 4 doses) was given on days 1, 2, 3, and 7. Timed blood samples were collected to measure plasma Epo concentrations. Animals underwent MRI/MRS and diffusion tensor imaging (DTI) at <72 h of age and again at 9 months. A battery of weekly developmental assessments was performed. Results: UCO resulted in death or moderate-severe CP in 43% of saline-, 44% of HT-, and 0% of HT+Epo-treated animals. Compared to non-UCO control animals, UCO animals exhibit poor weight gain, behavioral impairment, poor cerebellar growth, and abnormal brain DTI. Compared to UCO saline, UCO HT+Epo improved motor and cognitive responses, cerebellar growth, and DTI measures and produced a death/disability relative risk reduction of 0.911 (95% CI -0.429 to 0.994), an absolute risk reduction of 0.395 (95% CI 0.072-0.635), and a number needed to treat of 2 (95% CI 2-14). The effects of HT+Epo on DTI included an improved mode of anisotropy, fractional anisotropy, relative anisotropy, and volume ratio as compared to UCO saline-treated infants. No adverse drug reactions were noted in animals receiving Epo, and there were no hematology, liver, or kidney laboratory effects. Conclusions/Significance: HT+Epo treatment improved outcomes in nonhuman primates exposed to UCO. Adjunctive use of Epo combined with HT may improve the outcomes of term human infants with HIE, and clinical trials are warranted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.