This paper presents a mechanism to transform radio micro-Doppler signatures into a pseudo-audio representation, which results in significant improvements in transfer learning from a deep learning model trained on audio. We also demonstrate that transfer learning from a deep learning model trained on audio is more effective than transfer learning from a model trained on images, which suggests machine learning methods used to analyse audio can be leveraged for micro-Doppler. Finally, we utilise an occlusion method to gain an insight into how the deep learning model interprets the micro-Doppler signatures and the subsequent pseudo-audio representations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.