The purpose of this investigation was to study the effects of renal function on the pharmacokinetics and pharmacodynamics (PK-PD) of free cefazolin administered prophylactically in cardiothoracic surgery. Patients received an initial 2-g dose of cefazolin, followed by 1-g doses 6, 12, 18 and 24 h after the first dose. In patients who underwent cardiopulmonary bypass, 1 g was added to the priming solution. In 35 patients with a normal estimated creatinine clearance (CLcr) ≥50 ml/min, a free cefazolin concentration <4 μg/ml was observed in 11.4, 5.7 and 54.3% of patients before the second dose, at the end and 24 h after operation, respectively. In contrast, only 7.4% of 27 patients with CLcr <49 ml/min had a free cefazolin concentration <4 μg/ml 24 h after the operation. There was a high negative correlation between CLcr and time above the target minimal inhibitory concentration (MIC) when the CLcr was <50 ml/min (r(2) = 0.807), and no correlation when the CLcr was ≥50 ml/min. Renal function has a significant impact on the PK-PD of prophylactic cefazolin in cardiothoracic surgery. The postoperative drug dosing intervals should be <6 h in order to achieve a 100% time above the MIC in patients with CLcr ≥ 50 ml/min.
The current model for branching morphogenesis of mouse lung proposes that the epithelium bifurcates as cells pursue separate sources of fibroblast growth factor (FGF) 10, secreted from mesenchymal tissue through interactions with epithelial tissue. If so, it may be assumed that the lung epithelium will grow into a uniform, expanding ball (without branching) when uniformly exposed to a constant concentration of FGF10. To test this hypothesis, we cultured Matrigel-embedded lung epithelium explants in FGF10-supplemented medium while shaking the culture dishes. Shaking cultures with FGF10 resulted in inferior epithelial branching compared to control cultures at rest. However, this effect was unexpectedly accompanied by poor growth rather than by ball-like expansion. When using FGF1, epithelial cultures grew and branched similarly well under either culture condition. Thus, we hypothesized that FGF10 signaling must be mediated by autocrine FGFs, such as FGF1, which might easily diffuse through the culture medium in the shaking culture. Reverse transcription-polymerase chain reaction analyses showed that FGF9 as well as FGF1 were expressed in the epithelium in vivo and in FGF10-stimulated epithelium in vitro, and FGF9 induced epithelial branching at a much lower concentration than FGF10. These results suggest that FGF1 and FGF9 may mediate FGF10 signaling and induce branching in the lung epithelium via autocrine signaling.
Background With the emergence and growing number of drug-resistant Plasmodium falciparum , a new drug for malaria control must be urgently developed. The new antimalarial synthetic compound N-251 was recently discovered. As an endoperoxide structure in the body, the compound shows high antimalarial activity and curative effects. We performed a pharmacokinetic (PK) analysis of N-251 under various conditions using mice to understand the inhibitory effect of N-251 in parasite-infected mice. Results PK study of N-251 after intravenous and oral administration in mice showed plasma concentration of N-251 was decreased drastically by intravenous route. C max was reached in 2 h after oral administration of N-251, and the level decreased to a level similar to that obtained after intravenous administration. The area under the curves (AUCs) of the plasma concentration of N-251 increased dose-proportionally in both administrations, and bioavailability ( F ) was approximately 23%. Additionally, T max , C max , AUC, and F increased in fasted mice compared to normal-fed mice after the administration of N-251, indicating the influence of diet on the absorption kinetics of N-251. Furthermore, in parasite-infected fasted mice, the plasma concentration-time profile of N-251 was similar to that in normal-fasted mice. Based on the PK parameters of single oral administration of N-251, we investigated the effect of multiple oral doses of N-251 (68 mg/kg three times per day for 2 days) in normal-fed mice. The plasma concentration of N-251 was between 10 and 1000 ng/mL. The simulation curve calculated based on the PK parameters obtained from the single-dose study well described the plasma concentrations after multiple oral dosing, indicating that N-251 did not accumulate in the mice. Multiple oral administrations of N-251 in mice were required to completely eliminate parasites without accumulation of N-251. Conclusions N-251 has been selected as a potent antimalarial candidate. We found that N-251 showed short half-life in plasma, and AUCs increased proportionally to dose. With multiple doses of N-251, the plasma level of N-251 was greater than 10 ng/mL in normal-fed mice, and accumulation of N-251 was not observed; however, multiple treatments with N-251 are required for the complete cure of parasite-infected mice. Determining the appropriate dosage was an important step in the clinical applications of N-251.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.