The amount of plasma protein adsorbed on a phospholipid polymer having a 2-methacryloyloxyethyl phosphorylcholine (MPC) moiety was reduced compared to the amount of protein adsorbed onto poly[2-hydroxyethyl methacrylate (HEMA)], poly[n-butyl methacrylate (BMA)], and BMA copolymers with acrylamide (AAm) or N-vinyl pyrrolidone (VPy) moieties having a hydrophilic fraction. To clarify the reason for the reduced protein adsorption on the MPC polymer, the water structure in the hydrated polymer was examined with attention to the free water fraction. Hydration of the polymers occurred when they were immersed in water. The differential scanning calorimetric analysis of these hydrated polymers revealed that the free water fractions in the poly(MPC-co-BMA) and poly(MPC-co-n-dodecyl methacrylate) with a 0.30 MPC mole fraction were above 0.70. On the other hand, the free water fractions in the poly(HEMA), poly(AAm-co-BMA), and poly(VPy-co-BMA) were below 0.42. The conformational change in proteins adsorbed on the MPC polymers and poly(HEMA) were determined using ultraviolet and circular dichroism spectroscopic measurements. Proteins adsorbed on poly(HEMA) changed considerably, but those adsorbed on poly(MPC-co-BMA) with a 0.30 MPC mole fraction differed little from the native state. We concluded from these results that fewer proteins are adsorbed and their original conformation is not changed on polymer surfaces that possess a high free water fraction.
A hydrophobic to hydrophilic gradient surface was prepared using the tuned photodegradation of an alkylsilane self-assembled monolayer (SAM) using irradiation of vacuum ultraviolet light (wavelength=172 nm). The water contact angle on the photodegraded SAM surface was adjusted using the intensity and time photoirradiation parameters. The formation of a gradient was confirmed by fluorescent labeling. The water drop moved from the hydrophobic to hydrophilic surface with a velocity that depended on the gradient. The higher the gradient, the faster the water moved. For the first time, we have prepared a gradient surface using photodegradation where the movement of a water drop was regulated by the degree of gradation. Considering that the photodegradation technique can be applied to various surfaces and to lithography, this technique will be useful for various material surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.