Background-The effects of aging on angiogenesis (vascular sprouting) and vasculogenesis (endothelial precursor cell[EPC] incorporation into vessels) are not well known. We examined whether ischemia-induced angiogenesis/ vasculogenesis is altered in klotho (kl) mutant mice, an animal model of typical aging. Methods and Results-After unilateral hindlimb ischemia, laser Doppler blood-flow (LDBF) analysis revealed a decreased ischemic-normal LDBF ratio in kl mice. Tissue capillary density was also suppressed in kl mice (ϩ/ϩϾϩ/klϾkl/kl). Aortic-ring culture assay showed impaired angiogenesis in kl/kl mice, accompanied by reduced endothelium-derived nitric oxide release. Moreover, the rate of transplanted homologous bone marrow cells incorporated into capillaries in ischemic tissues (vasculogenesis) was lower in kl/kl mice than in wild-type (ϩ/ϩ) mice, which was associated with a decrease in the number of c-Kit ϩ CD31 ϩ EPC-like mononuclear cells in bone marrow and in peripheral blood. Finally, the 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor cerivastatin restored the impaired neovascularization in kl/kl mice, accompanied by an increase in c-Kit ϩ CD31 ϩ cells in bone marrow and peripheral blood, and enhanced angiogenesis in the aortic-ring culture. Conclusions-Angiogenesis and vasculogenesis are impaired in kl mutant mice, a model of typical aging. Moreover, the age-associated impairment of neovascularization might be a new target of statin therapy.
SUMMARY:A subset of human peripheral blood mononuclear cells (PB-MNCs) differentiate into endothelial progenitor cells (EPCs) that participate in postnatal neovascularization. Although tissue ischemia can mobilize EPCs from bone marrow, the effects of hypoxia on differentiation and angiogenic function of EPCs are little known. We examined whether hypoxic conditioning would modulate differentiation and function of human PB-MNC-derived EPCs. A subset of PB-MNCs gave rise to EPC-like attaching (AT) cells under either normoxic or hypoxic conditions. However, hypoxia much enhanced the differentiation of AT cells from PB-MNCs compared with normoxia. AT cells released vascular endothelial growth factor (VEGF) protein and expressed CD31 and kinase insert domain receptor/VEGFR-2, endothelial lineage markers, on their surface, which were also enhanced by hypoxia. Both a neutralizing anti-VEGF mAb and a KDR-specific receptor tyrosine kinase inhibitor, SU1498, suppressed PB-MNC differentiation into EPC-like AT cells in a dose-dependent manner. Migration of AT cells in response to VEGF as examined by a modified Boyden chamber apparatus was also enhanced by hypoxia. Finally, in vivo neovascularization efficacy was significantly enhanced by in vitro hypoxic conditioning of AT cells when cells were transplanted into the ischemic hindlimb of immunodeficient nude rats. In conclusion, hypoxia directly stimulated differentiation of EPC-like AT cells from human PB-MNC culture. Moreover, hypoxic preconditioning of AT cells before in vivo transplantation is a useful means to enhance therapeutic vasculogenesis. (Lab Invest 2003, 83:65-73).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.