Lenvatinib is a multiple receptor tyrosine kinase inhibitor targeting mainly vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF) receptors. We investigated the immunomodulatory activities of lenvatinib in the tumor microenvironment and its mechanisms of enhanced antitumor activity when combined with a programmed cell death-1 (PD-1) blockade. Antitumor activity was examined in immunodeficient and immunocompetent mouse tumor models. Single-cell analysis, flow cytometric analysis, and immunohistochemistry were used to analyze immune cell populations and their activation. Gene co-expression network analysis and pathway analysis using RNA sequencing data were used to identify lenvatinib-driven combined activity with anti-PD-1 antibody (anti-PD-1). Lenvatinib showed potent antitumor activity in the immunocompetent tumor microenvironment compared with the immunodeficient tumor microenvironment. Antitumor activity of lenvatinib plus anti-PD-1 was greater than that of either single treatment. Flow cytometric analysis revealed that lenvatinib reduced tumor-associated macrophages (TAMs) and increased the percentage of activated CD8 + T cells secreting interferon (IFN)-γ + and granzyme B (GzmB). Combination treatment further increased the percentage of T cells, especially CD8 + T cells, among CD45 + cells and increased IFN-γ + and GzmB + CD8 + T cells. Transcriptome analyses of tumors resected from treated mice showed that genes specifically regulated by the combination were significantly enriched for type-I IFN signaling. Pretreatment with lenvatinib followed by anti-PD-1 treatment induced significant antitumor activity compared with anti-PD-1 treatment alone. Our findings show that lenvatinib modulates cancer immunity in the tumor microenvironment by reducing TAMs and, when combined with PD-1 blockade, shows enhanced antitumor activity via the IFN signaling pathway. These findings provide a scientific rationale for combination therapy of lenvatinib with PD-1 blockade to improve cancer immunotherapy.
Angiogenesis inhibitors such as lenvatinib and sorafenib, and an immune checkpoint inhibitor (ICI), nivolumab, are used for anticancer therapies against advanced hepatocellular carcinoma (HCC). Combination treatments comprising angiogenesis inhibitors plus ICIs are promising options for improving clinical benefits in HCC patients, and clinical trials are ongoing. Here, we investigated the antitumor and immunomodulatory activities of lenvatinib (a multiple receptor tyrosine kinase inhibitor targeting vascular endothelial growth factor receptor 1‐3, fibroblast growth factor receptor 1‐4, platelet‐derived growth factor receptor α, KIT and RET) and the combined antitumor activity of lenvatinib plus anti‐programmed cell death 1 (PD‐1) antibody in the Hepa1‐6 mouse HCC syngeneic model. We found that the antitumor activities of lenvatinib and sorafenib were not different in immunodeficient mice, but lenvatinib showed more potent antitumor activity than sorafenib in immunocompetent mice. The antitumor activity of lenvatinib was greater in immunocompetent mice than in immunodeficient mice and was attenuated by CD8+ T cell depletion. Treatment with lenvatinib plus anti‐PD‐1 antibody resulted in more tumor regression and a higher response rate compared with either treatment alone in immunocompetent mice. Single‐cell RNA sequencing analysis demonstrated that treatment with lenvatinib with or without anti‐PD‐1 antibody decreased the proportion of monocytes and macrophages population and increased that of CD8+ T cell populations. These data suggest that lenvatinib has immunomodulatory activity that contributes to the antitumor activity of lenvatinib and enhances the antitumor activity in combination treatment with anti‐PD‐1 antibody. Combination treatment of lenvatinib plus anti‐PD‐1 antibody therefore warrants further investigation against advanced HCC.
SUMMARY: The magnitude of intraspecific and interspecific genetic differentiation in Pagrus major collected from two Japanese areas, the East China Sea (ECS) and the South China Sea (SCS), and Pagrus auratus, collected from Australia (AUS) and New Zealand (NZ), was estimated using restriction fragment length polymorphism (RFLP) analysis and DNA direct sequencing of the mtDNA control region. The RFLP haplotypic diversities in P. major samples were high (0.88–0.93); in contrast, these diversities were relatively lower (0.58–0.65) in P. auratus samples. The relative relationships among samples that resulted from RFLP analysis were almost the same as those from DNA direct sequencing, except that values from the former were less sensitive and were one‐third to one‐fifth lower than those from the latter. A significant heterogeneity was observed in the distribution of RFLP haplotypes between samples from P. auratus and P. major, and between samples from AUS and NZ. The difference of the nucleotide substitution by direct sequencing in the control region between P. auratus and P. major was 3.48%. Based on the substitution rate, the division time between samples from P. auratus and P. major was assumed to be 2–6 million years ago. With regard to morphological aspects, there was a significant difference in the bump between NZ and ECS samples, although there were no other significant external morphological differences. From these results, we suggest that the relationship between these ‘species’ is at the level of a subspecies. Accordingly, P. major might be renamed P. auratus major and P. auratus renamed P. auratus auratus.
We have isolated a clonal line reversed (rev) of homozygous Japanese flounder through gynogenesis. The homozygous offspring gynogenetically produced from rev exhibited reversal of organization of the metamorphic L/R asymmetry such as the direction of eye-migration at a high frequency (20-30%). The molecular analysis using a left-specific marker pitx2 revealed that the embryonic L/R axis was ambiguously established: in more than half of rev embryos, pitx2 was expressed bilaterally in the lateral plate mesoderm (LPM). Previous studies in other animals demonstrated that ectopic pitx2 expression in the LPM could cause laterality defects of the visceral organs. Likewise, our results using rev imply that bilateral pitx2 expression could lead to randomization of the visceral organs. Coincidence of ectopic pitx2 expression and reversal of the direction of eye-migration in the population of rev offspring suggests that the rev locus is critical in specification of both the metamorphic and the visceral L/R asymmetries. However, reversal of the sidedness of the orientation of the visceral organs was not always accompanied by reversal of the direction of metamorphic eye-migration, suggesting that different mechanisms should be involved downstream of the rev locus in directing these two phases of asymmetric morphogenesis in the Japanese flounder.
SUMMARY: Stock enhancement is used in Japan as a tool to help the replenishment of wild populations of red sea bream Pagrus major. In this study, we analyzed the genetic diversity and composition of wild red sea bream at seven locations around Shikoku Island, South‐west Japan, using three microsatellite loci. This analysis was done to test the hypothesis that: (i) red sea bream comprises a single Mendelian population along Japan; and (ii) stock enhancement programs around Shikoku Island are causing genetic differentiation among wild stocks. The results indicated that some locations from the Shikoku area were not significantly different from the rest of Japan, supporting the hypothesis of a single Mendelian population. Significant departures from Hardy–Weinberg equilibrium and significant pairwise FST among locations indicated genetic instability within this region. We suggest that the stock enhancement programs made in the region are the possible cause of this genetic instability. A management scheme for the hatcheries involved in the stock enhancement of red sea bream is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.