Genetic variation and population structure of wild white shrimp (Litopenaeus vannamei) from 4 geographic locations from Mexico to Panama were investigated using 5 microsatellite DNA loci. The genetic diversity between populations was indicated by the mean number of alleles per locus and mean observed heterozygosity, which ranged from 7.4 to 8.6 and from 0.241 to 0.388, respectively. Significant departures from Hardy-Weinberg equilibrium were found at most locations at each locus, with the exception Guatemala at Pvan0013, and were caused by high heterozygote deficiencies. Genetic differences between localities were detected by pairwise comparison based on allelic and genotypic frequencies, with the exception of locus Pvan1003. Significant pairwise F (ST) values between locations and total F (ST) showed that the white shrimp population is structured into subpopulations. However, population differentiation does not follow an isolation-by-distance model. Knowledge of the genetic diversity and structure of L.vannamei populations will be of interest for aquaculture and fisheries management to utilize and preserve aquatic biodiversity.
Genetic diversity in a shrimp-breeding program was monitored for 2 generations by microsatellite DNA markers (Pvan1578 and Pvan1815) to establish levels of variation and proceed with a selection program. An increase in the number and frequencies of some alleles in both microsatellite loci from G0 to G2 was induced by foreign sire contributions. Most common alleles and high heterozygosities (around 70% in both loci) were maintained through the generations, indicating that there had not been a significant loss of genetic variability in the breeding program. However, when compared with variability in other wild and cultured stocks, the presence of 4 main alleles at both loci may be an indication that a certain reduction in variability already was present in the line used as founder stock (G0). Therefore, it is recommended that additional genetic variability be introduced to the breeding stock by crossing it with a different line.
SUMMARY: Stock enhancement is used in Japan as a tool to help the replenishment of wild populations of red sea bream Pagrus major. In this study, we analyzed the genetic diversity and composition of wild red sea bream at seven locations around Shikoku Island, South‐west Japan, using three microsatellite loci. This analysis was done to test the hypothesis that: (i) red sea bream comprises a single Mendelian population along Japan; and (ii) stock enhancement programs around Shikoku Island are causing genetic differentiation among wild stocks. The results indicated that some locations from the Shikoku area were not significantly different from the rest of Japan, supporting the hypothesis of a single Mendelian population. Significant departures from Hardy–Weinberg equilibrium and significant pairwise FST among locations indicated genetic instability within this region. We suggest that the stock enhancement programs made in the region are the possible cause of this genetic instability. A management scheme for the hatcheries involved in the stock enhancement of red sea bream is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.