Nicotinic acetylcholine receptors (nAChRs), being responsible for mediating key physiological functions, are ubiquitous in the central and peripheral nervous systems. As members of the Cys loop ligand-gated ion channel family, neuronal nA-ChRs are pentameric, composed of various permutations of α (α2 to α10) and β (β2 to β4) subunits forming functional heteromeric or homomeric receptors. Diversity in nAChR subunit composition complicates development of selective ligands for specific subtypes, since the five binding sites reside at the subunit interfaces. The acetylcholine binding protein (AChBP), a soluble extracellular domain homologue secreted by mollusks, serves as a general structural surrogate for the nAChRs. In this work, homomeric AChBPs from Lymnaea and Aplysia snails were used as in situ templates for the generation of novel and potent ligands that selectively bind to these proteins. The cycloaddition reaction between building block azides and alkynes to form stable 1,2,3-triazoles generated the leads. The extent of triazole formation on the AChBP template correlated with the affinity of the triazole product at the nicotinic ligand binding site. Instead of the in situ protein-templated azide-alkyne cycloaddition reaction occurring at a localized, sequestered enzyme active center as previously shown, we demonstrate that the in situ reaction can take place at subunit interfaces of an oligomeric protein and can thus be used as a tool for identification of novel candidate nAChR ligands. The crystal structure of one of the in situ formed triazole–AChBP complexes shows binding poses and molecular determinants of interactions predicted from structures of known agonists and antagonists. Hence, the click chemistry approach with an in situ template of a receptor provides a novel synthetic avenue for generating candidate agonists and antagonists for ligand-gated ion channels.
In anticipation of a globalising post-Fordist political economy, countries and universities are increasingly pursuing strategic transnational education and research alliances. This article analyses the Global Schoolhouse, a key education policy platform that aims to transform Singapore into a knowledge and innovation hub by establishing networks and collaborations with foreign universities. Two Global Schoolhouse initiatives are examined-the alliance between Singapore and MIT (Massachusetts Institute of Technology), and the institutional restructuring aimed at re-modelling the National University of Singapore into a 'leading global university centred in Asia'. We outline some of the complexities and unanticipated outcomes which emerge when nations and their education institutions seek to globalise.
Non-transferrin-bound iron (NTBI) overtaken by heart cells might be a key cause leading to iron-mediated injury in heart disorders. NTBI uptake by heart cells might be mediated by divalent metal transporter 1 (DMT1). The understanding of the role of DMT1 in heart iron metabolism is fundamental for elucidating the cause resulting in excessive iron in the heart. The study was to evaluate effects of age and dietary iron on DMT1 mRNA expression and protein synthesis in rat heart. DMT1 mRNA expression was determined by RT-PCR and sequence analysis, and DMT1 protein by Western blot analysis. DMT1 mRNAs with or without iron-responsive element (IRE) both were found in rat heart. Expression of two forms of DMT1 mRNAs was the lowest at the age of post-natal day (PND) 7, and then increased with the age, reaching the highest at PND196 (non-IRE form) and PND63 (IRE form), respectively. During different ages, the levels of DMT1 (IRE) mRNA were higher than those of DMT1 (non-IRE) mRNA and were significantly correlated with the non-heme iron contents in the heart. After fed a high iron for 6 weeks, the rats had a sixfold elevation in heart iron and 22% (non-IRE from) and 40% (IRE from) reduction in DMT1 protein compared to the controls. A low iron diet for 6-weeks caused cardiac hypertrophy and heart iron deficiency and also an increase in levels of two forms of DMT1 proteins. However, iron status had no significant effect on DMT1 (IRE) and DMT1 (non-IRE) mRNAs expression in the heart, although it can significantly influence heart transferrin receptor (TfR) mRNA expression. The results demonstrated that DMT1 mRNAs expression in the heart is age-dependent and that two forms of DMT1 mRNAs both are regulated by iron on the post-transcriptional level only.
The discovery of the acetylcholine binding proteins (AChBPs) has provided critical soluble surrogates for examining structure and ligand interactions with nicotinic receptors and related pentameric ligand-gated ion channels. The multiple marine and freshwater sources of AChBP constitute a protein family with substantial sequence divergence and selectivity in ligand recognition for analyzing structure-activity relationships. The purification of AChBP in substantial quantities in the absence of a detergent enables one to conduct spectroscopic studies of the ligand-AChBP complexes. To this end, we have examined the interaction of a congeneric series of benzylidene-ring substituted anabaseines with AChBPs from Lymnaea, Aplysia, and Bulinus species and correlated their binding energetics with spectroscopic changes associated with ligand binding. The anabaseines display agonist activity on the α7 nicotinic receptor, a homomeric receptor with sequences similar to those of the AChBPs. Substituted anabaseines show absorbance and fluorescence properties sensitive to the protonation state, relative permittivity (dielectric constant), and the polarizability of the surrounding solvent or the proximal residues in the binding site. Absorbance difference spectra reveal that a single protonation state of the ligand binds to AChBP and that the bound ligand experiences a solvent environment with a high degree of polarizability. Changes in the fluorescence quantum yield of the bound ligand reflect the rigidification of the ring system of the bound ligand. Hence, the spectral properties of the bound ligand allow a description of the electronic character of the bound state of the ligand within its aromatic binding pocket and provide information complementary to that of crystal structures in defining the determinants of interaction.Nicotinic acetylcholine receptors are prototypical members of the ligand-gated ion channel superfamily of receptors that include 5-HT 3 , GABA-A and -C, and glycine receptors. Nicotinic receptors are found at the neuromuscular junction and throughout the nervous system, where they exist as either homomeric or heteromeric pentamers of subunits † Supported by USPHS Fellowships NS 043063 to T.T.T., RO1-MH61412 to W.R.K., and R37-GM18360 to P.T.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.