Quality control and non-destructive monitoring are of notable interest of food and pharmaceutical industries. It relies on the ability of non-invasive inspection which can be employed for manufacturing process control. We hereby apply terahertz (THz) time-domain spectroscopy as non-destructive technique to monitor pure and degraded oils as well as hydrocarbon chemicals. Significant differences in the spectra of refractive index (RI) and absorption coefficient arising from the presence of ester linkages in the edible and technical oils were obtained. Explicit increase from 1.38 to 1.5 of the RI in all THz spectrum range was observed in hydrocarbons and mono-functional esters with the increase of molar mass. This fact is in contrast of RI dependence on molar mass in multi-functional esters, such as Adipate or vegetable oils, where it is around 1.54. Degradation products, Oleic Acid (OA) and water in particular, lead only to some changes in absorption coefficient and RI spectra of vegetable oils. We demonstrate that complex colloidal and supramolecular processes, such as dynamics of inverse micelles and oil hydrolysis, take part during oil degradation and are responsible for non-uniform dependence of optical properties on extent of degradation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.