β-Ga2O3 thin films were grown on the substrates of sapphire, GaN, and single crystals of β-Ga2O3, using plasma-assisted molecular beam epitaxy. By varying deposition conditions, pure-phase epitaxial β-Ga2O3 thin films were obtained, and the crystal quality of the as-grown films was optimized. A systematic characterization and a detailed analysis were performed on the films, including the nucleation process, surface morphology, crystal quality, thermal stability, as well as electrical and optical properties. Optical absorption was investigated using photothermal deflection spectroscopy, which provides detailed information about sub-gap optical absorption. Photocurrent measurements indicated a pronounced persistent photo-conductivity of β-Ga2O3. A blue-UV emission with an energy of 3–3.5 eV was observed by cathodoluminescence spectroscopy. The Fermi level position of the as-grown film was determined based on temperature-dependent electrical conductivity measurements. It is proposed that oxygen vacancies in the film form a defect band at around Ec-0.8 eV that pins the Fermi level and is related to the observed photocurrent and cathodoluminescence characteristics.
This work is a systematic study on charge carrier (hole) mobility and structure of blends of poly(3-hexylthiophene) (P3HT) with small-molecular aromatic diimides (ADIs): N,N'-di(n-hexyl)benzene-1,2,4,5-tetracarboxylic diimide, N,N'-di(n-butyl)- or N,N'-di(n-hexyl)naphthalene-1,4,5,8-tetracarboxylic diimide. The...
Herein we report on fabrication and properties of organic field-effect transistors (OFETs) based on the spray-coated films of N,N′-dioctyl naphthalene diimide (NDIC8) doped with 2.4 wt% of poly (3-hexylthiophene) (P3HT). OFETs with the untreated NDIC8:P3HT films revealed electron conductivity [μe* = 5 × 10–4 cm2×(Vs)−1]. After the annealing in chloroform vapor the NDIC8:P3HT films revealed the hole transport only [μh* = 0.9 × 10–4 cm2×(Vs)−1]. Due to the chemical nature and energy levels, the hole transport was not expected for NDIC8-based system. Polarized optical- and scanning electron microscopies indicated that the solvent vapor annealing of the NDIC8:P3HT films caused a transition of their fine-grained morphology to the network of branched, dendritic crystallites. Grazing incidence wide-angle X-ray scattering studies indicated that the above transition was accompanied by a change in the crystal structure of NDIC8. The isotropic crystal structure of NDIC8 in the untreated film was identical to the known crystal structure of the bulk NDIC8. After the solvent annealing the crystal structure of NDIC8 changed to a not-yet-reported polymorph, that, unlike in the untreated film, was partially oriented with respect to the OFET substrate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.