The purpose of this study is to explore the possibilities for the application of laser therapy in medicine and dentistry by analyzing lasers’ underlying mechanism of action on different cells, with a special focus on stem cells and mechanisms of repair. The interest in the application of laser therapy in medicine and dentistry has remarkably increased in the last decade. There are different types of lasers available and their usage is well defined by different parameters, such as: wavelength, energy density, power output, and duration of radiation. Laser irradiation can induce a photobiomodulatory (PBM) effect on cells and tissues, contributing to a directed modulation of cell behaviors, enhancing the processes of tissue repair. Photobiomodulation (PBM), also known as low-level laser therapy (LLLT), can induce cell proliferation and enhance stem cell differentiation. Laser therapy is a non-invasive method that contributes to pain relief and reduces inflammation, parallel to the enhanced healing and tissue repair processes. The application of these properties was employed and observed in the treatment of various diseases and conditions, such as diabetes, brain injury, spinal cord damage, dermatological conditions, oral irritation, and in different areas of dentistry.
BackgroundWhen implants are restored with cement-retained restorations, prosthetic retrievability can be difficult and often requires sectioning using rotary instruments. Sometimes repeated removals of a cement-retained implant crown are needed such as for treatment of peri-implantitis or immediate implant provisionalization. The purpose of this study was to evaluate the effect of erbium-doped yttrium aluminum garnet (Er:YAG) laser as a non-invasive treatment modality to remove lithium disilicate crowns from zirconia implant abutments following long-term cementation, repetitive debonding and re-cementation, and short-term retrieval.Material and methodsTwenty identical lithium disilicate crowns were cemented onto zirconia prefabricated abutments using composite resin cement. Ten cemented crowns were removed at 48 hours after cementation as a short-term group (ST), while another 10 were removed 6 months after cementation as a long-term group (LT). To mimicking repetitive recementation and retrieval, the LT crowns were then recemented and removed after 48 hours as a long-term recemention (LTR) group. The LTR crowns were then again recemented and removed after 48 hours as a long-term repeated recemention (LTRR) group. Er:YAG laser was used to facilitate the retrieval of these crowns. recorded and analyzed using ANOVA and t-test. The surfaces of the crown and the abutment were further examined using light microscopy and scanning electron microscopy (SEM). Temperature changes of the abutment and crown upto 10 minutes were also measured and statistically analyzed (paired t-test).ResultsThe average times of crown removal from zirconia abutments were 4 minutes (min) and 42 second (sec) in LT to 3 min 24 sec in LTR, and 3 min 12 sec in LTRR and ST groups. LTR took the longest time to remove, statistically (ANOVA and t-test, p < .001). No statistical differences were observed among the removal times of LTR, LTRR, and ST groups (t-test, p = .246, .246 and 1). SEM examination of the material surface showed no visual surface damaging from treatment with Er:YAG laser. The temperatures during irradiation ranged from 18.4°C to 20°C and 22.2°C to 24.5°C (Paired t-test, p < .0001) for the abutment and the crown during irradiation from 1 min to 10 mins.ConclusionsLong-term cementation can increase time in lithium disilicate crown removal from zirconia abutment using Er:YAG. Er:YAG laser is a non-invasive tool to remove cement-retained implant prostheses and should be considered as a viable alternative to rotary instruments.
Purpose Removal of cement‐retained implant crowns can be difficult and often requires sectioning of the prosthesis by rotary instruments. This study aimed to measure how much time is required in crown removal and the temperature changes when erbium‐doped yttrium aluminum garnet (Er:YAG) laser was used to retrieve lithium disilicate crowns from titanium implant abutments luted with composite resin (CR) cement and resin‐modified glass ionomer (RMGI). Materials and Methods Forty identical lithium disilicate crowns were fabricated for prefabricated titanium abutments. CR and RMGI cements were used to lute the crowns, 20 specimens for each cement. Specimens were kept in 100% humidity for 48 hours. Er:YAG laser was then used to facilitate the crown retrieval. The retrieval time was recorded. The temperature changes at the abutment level for each type of cement were recorded during irradiation of 10 specimens for each type of cement from 1 to 10 minutes. Data were analyzed using t‐test (ɑ = 0.01) and paired t‐test (ɑ = 0.05). The surfaces of the crown and the abutment were further examined using scanning electron microscopy (SEM). Results The average times of crown removal from titanium abutments were 196.5 seconds for CR and 97.5 seconds for RMGI groups with statistical significance (p < 0.001). The temperatures measured from 1 to 10 minutes of irradiation ranged from 18° to 20.8° for CR and 18° to 23° for RMGI at the abutment surface, and 22.1° to 24.6° for CR and 22° to 24.8° for RMGI at the crown surface. No statistical differences were observed between temperature changes at the abutment or the crown for each cement (p = 0.63); however, there was a statistically significant difference between the temperatures at the abutment and crown for both cements (p < 0.001). SEM examination showed no visible damage caused by treatment with Er:YAG laser. Conclusions It is faster to remove lithium disilicate crowns from titanium implant abutments when luted with RMGI compared to CR cement. The temperature rise was higher in the crown compared to the abutment. The type of cement had no effects on temperature changes. Heat generated from Er:YAG irradiation does not appear to be high enough to have any adverse effect on implant osseointegration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.