Dengue virus (DENV), a member of the family Flaviviridae, is a threat for global health as it infects more than 100 million people yearly. Approved antiviral therapies or vaccines for the treatment or prevention of DENV infections are not available. In the present study, natural compounds were screened for their antiviral activity against DENV by in vitro cell line-based assay. α-Mangostin, a xanthanoid, was observed to exert antiviral activity against DENV-2 under pre-, co- and post-treatment testing conditions. The antiviral activity was determined by foci forming unit (FFU) assay, quantitative RT-PCR and cell-based immunofluorescence assay (IFA). A complete inhibition of DENV-2 was observed at 8 µM under the co-treatment condition. The possible inhibitory mechanism of α-Mangostin was also determined by docking studies. The molecular docking experiments indicate that α-Mangostin can interact with multiple DENV protein targets such as the NS5 methyltransferase, NS2B-NS3 protease and the glycoprotein E. The in vitro and in silico findings suggest that α-Mangostin possesses the ability to suppress DENV-2 production at different stages of its replication cycle and might act as a prophylactic/therapeutic agent against DENV-2.
A prominent research topic in contemporary advanced functional materials science is the production of smart materials based on polymers that may independently adjust their physical and/or chemical characteristics when subjected to external stimuli. Smart hydrogels based on poly(N-isopropylacrylamide) (PNIPAM) demonstrate distinct thermoresponsive features close to a lower critical solution temperature (LCST) that enhance their capability in various biomedical applications such as drug delivery, tissue engineering, and wound dressings. Nevertheless, they have intrinsic shortcomings such as poor mechanical properties, limited loading capacity of actives, and poor biodegradability. Formulation of PNIPAM with diverse functional constituents to develop hydrogel composites is an efficient scheme to overcome these defects, which can significantly help for practicable application. This review reports on the latest developments in functional PNIPAM-based smart hydrogels for various biomedical applications. The first section describes the properties of PNIPAM-based hydrogels, followed by potential applications in diverse fields. Ultimately, this review summarizes the challenges and opportunities in this emerging area of research and development concerning this fascinating polymer-based system deep-rooted in chemistry and material science.
Human cytomegalovirus (HCMV) remains an essential global concern due to its distinct life cycle, mutations and latency. As HCMV is a herpesvirus, it establishes a lifelong persistence in the host through a chronic state of infection. Immunocompromised individuals are at risk of significant morbidity and mortality from the virus. Until now, no effective vaccine has been developed to combat HCMV infection. Only a few antivirals targeting the different stages of the virus lifecycle and viral enzymes are licensed to manage the infection. Therefore, there is an urgent need to find alternate strategies to combat the infection and manage drug resistance. This review will provide an insight into the clinical and preclinical antiviral approaches, including HCMV antiviral drugs and nucleic acid-based therapeutics.
Dengue fever is one of the most common viral infections affecting humans. It is an expanding public health problem, particularly in tropical and subtropical regions. No effective vaccine or antiviral therapies against Dengue virus (DENV) infection are available. Therefore, there is a strong need to develop safe and effective therapeutic strategies that can reduce the burden and duration of hospitalizations due to this life-threatening disease. Oligonucleotide-based strategies are considered as an attractive means of inhibiting viral replication since oligonucleotides can be designed to interact with any viral RNA, provided its sequence is known. The resultant targeted destruction of viral RNA interferes with viral replication without inducing any adverse effects on cellular processes. In this review, we elaborate the ribozymes, RNA interference, CRISPR, aptamer and morpholino strategies for the inhibition of DENV replication and discuss the challenges involved in utilizing such approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.