Several research groups have shown how to map fMRI responses to the meanings of presented stimuli. This paper presents new methods for doing so when only a natural language annotation is available as the description of the stimulus. We study fMRI data gathered from subjects watching an episode of BBCs Sherlock [1], and learn bidirectional mappings between fMRI responses and natural language representations. By leveraging data from multiple subjects watching the same movie, we were able to perform scene classification with 72% accuracy (random guessing would give 4%) and scene ranking with average rank in the top 4% (random guessing would give 50%). The key ingredients underlying this high level of performance are (a) the use of the Shared Response Model (SRM) and its variant SRM-ICA [2, 3] to aggregate fMRI data from multiple subjects, both of which are shown to be superior to standard PCA in producing low-dimensional representations for the tasks in this paper; (b) a sentence embedding technique adapted from the natural language processing (NLP) literature [4] that produces semantic vector representation of the annotations; (c) using previous timestep information in the featurization of the predictor data. These optimizations in how we featurize the fMRI data and text annotations provide a substantial improvement in classification performance, relative to standard approaches.
This paper introduces the Logic-based Value Iteration Network (LVIN) framework, which combines imitation learning and logical automata to enable agents to learn complex behaviors from demonstrations. We address two problems with learning from expert knowledge: (1) how to generalize learned policies for a task to larger classes of tasks, and (2) how to account for erroneous demonstrations. Our LVIN model solves finite gridworld environments by instantiating a recurrent, convolutional neural network as a value iteration procedure over a learned Markov Decision Process (MDP) that factors into two MDPs: a small finite state automaton (FSA) corresponding to logical rules, and a larger MDP corresponding to motions in the environment. The parameters of LVIN (value function, reward map, FSA transitions, large MDP transitions) are approximately learned from expert trajectories. Since the model represents the learned rules as an FSA, the model is interpretable; since the FSA is integrated into planning, the behavior of the agent can be manipulated by modifying the FSA transitions. We demonstrate these abilities in several domains of interest, including a lunchboxpacking manipulation task and a driving domain.
Companies increasingly expose machine learning (ML) models trained over sensitive user data to untrusted domains, such as end-user devices and wide-access model stores. This creates a need to control the data's leakage through these models. We present Sage, a differentially private (DP) ML platform that bounds the cumulative leakage of training data through models. Sage builds upon the rich literature on DP ML algorithms and contributes pragmatic solutions to two of the most pressing systems challenges of global DP: running out of privacy budget and the privacy-utility tradeoff. To address the former, we develop block composition, a new privacy loss accounting method that leverages the growing database regime of ML workloads to keep training models endlessly on a sensitive data stream while enforcing a global DP guarantee for the stream. To address the latter, we develop privacyadaptive training, a process that trains a model on growing amounts of data and/or with increasing privacy parameters until, with high probability, the model meets developerconfigured quality criteria. Sage's methods are designed to integrate with TensorFlow-Extended, Google's open-source ML platform. They illustrate how a systems focus on characteristics of ML workloads enables pragmatic solutions that are not apparent when one focuses on individual algorithms, as most DP ML literature does.
We introduce a method to learn imitative policies from expert demonstrations that are interpretable and manipulable. We achieve interpretability by modeling the interactions between high-level actions as an automaton with connections to formal logic. We achieve manipulability by integrating this automaton into planning, so that changes to the automaton have predictable effects on the learned behavior. These qualities allow a human user to first understand what the model has learned, and then either correct the learned behavior or zero-shot generalize to new, similar tasks. We build upon previous work by no longer requiring additional supervised information which is hard to collect in practice. We achieve this by using a deep Bayesian nonparametric hierarchical model. We test our model on several domains and also show results for a real-world implementation on a mobile robotic arm platform.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.