Restoring forest structure and composition is an important component of urban land management, but we lack clear understanding of the mechanisms driving restoration success. Here we studied two indicators of restoration success in temperate rainforests: native tree regeneration and epiphyte colonization. We hypothesized that ecosystem properties such as forest canopy openness, abundance of exotic herbaceous weeds, and the microclimate directly affect the density and diversity of native tree seedlings and epiphytes. Relationships between environmental conditions and the plant community were investigated in 27 restored urban forests spanning 3-70 years in age and in unrestored and remnant urban forests. We used structural equation modelling to determine the direct and indirect drivers of native tree regeneration and epiphyte colonization in the restored forests. Compared to remnant forest, unrestored forest had fewer native canopy tree species, significantly more light reaching the forest floor annually, and higher exotic weed cover. Additionally, epiphyte density was lower and native tree regeneration density was marginally lower in the unrestored forests. In restored forests, light availability was reduced to levels found in remnant forests within 20 years of restoration planting, followed shortly thereafter by declines in herbaceous exotic weeds and reduced fluctuation of relative humidity and soil temperatures. Contrary to expectations, canopy openness was only an indirect driver of tree regeneration and epiphyte colonization, but it directly regulated weed cover and microclimatic fluctuations, both of which directly drove the density and richness of regeneration and epiphyte colonization. Epiphyte density and diversity were also positively related to forest basal area, as large trees provide physical habitat for colonization. These results imply that ecosystem properties change predictably after initial restoration plantings, and that reaching critical thresholds in some ecosystem properties makes conditions suitable for the regeneration of late successional species, which is vital for restoration success and long-term ecosystem sustainability. Abiotic and biotic conditions that promote tree regeneration and epiphyte colonization will likely be present in forests with a basal area ≥27 m /ha. We recommend that urban forest restoration plantings be designed to promote rapid canopy closure to reduce light availability, suppress herbaceous weeds, and stabilize the microclimate.
Urban ecological restoration typically employs western science approaches to restore degraded ecosystems. As yet, few restoration groups acknowledge the history of these degraded urban sites, despite connections, past and present, that root Indigenous Peoples (and others) in these lands. Here, we promote partnership with Indigenous communities from project inception and present two successful case studies from Aotearoa New Zealand. We specifically note that partnering and building relationships with Indigenous communities in restoration efforts require recognition of power inequalities and injustices. We consider success to include both restoration of ecological function and biodiversity and reconnection of all communities to urban ecosystems.
New Zealand's formerly extensive lowland native forests have been comprehensively cleared or modified, and large areas of secondary-growth vegetation have subsequently established. These areas are comprised of native, exotic, and mixed tree and shrub species assemblages. The mature-phase canopy and emergent tree species representative of pre-human New Zealand forests are often rare or locally extinct in these forests, indicating negative ramifications for long-term biodiversity conservation and ecosystem service provision, especially such as carbon sequestration. The successful recruitment of mature-phase canopy and emergent tree species may be prevented by biotic and abiotic filters related to dispersal (e.g. lack of seed sources or lack of dispersal agents), environmental variation (e.g. unsuitable germination microclimate or light availability), and competition (e.g. exotic weed competition). Failure of mature-phase tree species to cross through these filters may halt forest succession and cause arrested development of the ecosystem. There are also social and cultural imperatives for restoring mature-phase tree species, such as reassembling desired forest habitat and landscapes and providing lost natural heritage and cultural resources. Therefore, to restore secondary forests, depauperate remnant forests and create new forests that have complex structure, high biomass, and natural canopy tree diversity, mature-phase canopy and emergent species should be reintroduced through human interventions (i.e. enrichment planting). Experiments demonstrate that mature-phase tree species establishment can be optimised through canopy manipulation to address competition for light. Such targeted management can determine successful recruitment of mature-phase tree species, as can weed maintenance post-enrichment planting and landscape-level pest animal control. Currently political focus is emphasising planting of new early-successional native forests. However, support from scientific research and policy development is essential to actively recruit mature-phase tree species where they are now poorly represented and hence forest succession may be arrested. Afforestation and emissions trading policies need to support the reinstatement of mature-phase tree species within existing regenerating and degraded forests and newly created forests to facilitate the substantial ecological and ecosystem service benefits they provide over the long-term.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.