Advanced microsystems widely used in integrated optoelectronic devices, energy harvesting components, and microfluidic lab-on-chips require high-aspect silicon microstructures with a precisely controlled profile. Such microstructures can be fabricated using the Bosch process, which is a key process for the mass production of micro-electro-mechanical systems (MEMS) devices. One can measure the etching profile at a cross-section to characterize the Bosch process quality by cleaving the substrate into two pieces. However, the cleaving process of several neighboring deeply etched microstructures is a very challenging and uncontrollable task. The cleaving method affects both the cleaving efficiency and the metrology quality of the resulting etched microstructures. The standard cleaving technique using a diamond scriber does not solve this issue. Herein, we suggest a highly controllable cross-section cleaving method, which minimizes the effect on the resulting deep etching profile. We experimentally compare two cleaving methods based on various auxiliary microstructures: (1) etched transverse auxiliary lines of various widths (from 5 to 100 μm) and positions; and (2) etched dashed auxiliary lines. The interplay between the auxiliary lines and the etching process is analyzed for dense periodic and isolated trenches sized from 2 to 50 μm with an aspect ratio of more than 10. We experimentally showed that an incorrect choice of auxiliary line parameters leads to silicon “build-up” defects at target microstructures intersections, which significantly affects the cross-section profile metrology. Finally, we suggest a highly controllable defect-free cross-section cleaving method utilizing dashed auxiliary lines with the stress concentrators.
Nanoplasmonic waveguides utilizing surface plasmon polaritons (SPPs) propagation have been investigated for more than 15 years and are now well understood. Many researchers make their efforts to find the best ways of using light and overcoming the speed limit of integrated circuits by means of SPPs. Here, we introduce the simulation results and fabrication technology of dielectric-metal-dielectric long-range nanoplasmonic waveguides, which consists of a multilayer stack based on ultrathin noble metals in between alumina thin films. Various waveguide topologies are simulated to optimize all the geometric and multilayer stack parameters. We demonstrate the calculated propagation length of Lprop = 0.27 mm at the 785 nm wavelength for the Al2O3/Ag/Al2O3 waveguides. In addition, we numerically show the possibility to eliminate signal cross-talks (less than 0.01%) between two crossed waveguides. One of the key technology issues of such waveguides’ nanofabrication is a dry, low-damage-etching of a multilayer stack with extremely sensitive ultrathin metals. In this paper, we propose the fabrication process flow, which provides both dry etching of Al2O3/Au(Ag)/Al2O3 waveguides nanostructures with high aspect ratios and non-damage ultrathin metal films patterning. We believe that the proposed design and fabrication process flow provides new opportunities in next-generation photonic interconnects, plasmonic nanocircuitry, quantum optics and biosensors.
Рассмотрен технологический процесс термической обработки заготовок зубчатых колес. Исследованы предварительная и окончательная термическая обработка зубчатого колеса, включающая в себя определение необходимой температуры нагрева, времени выдержки и используемой при обработке среды. На основе экспериментальных данных установлены закономерности, определяющие эксплуатационные свойства зубчатых колес, имеющих повышенные требования к коррозионной стойкости. Составлен технологический режим окончательной термической обработки, содержащий два этапа: 1) закалка с высоким отпуском; 2) закалка токами высокой частоты (ТВЧ) с низким отпуском. Определены необходимые температуры нагрева, времени выдержки и используемой при обработке среды.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.