Unique hierarchical laser-induced periodic surface structures (LIPSSs) enable the detection of metal ions at sub-nM concentrations via surface-enhanced fluorescence.
In this paper, we present the results of thermochemical LIPSS formation on a chromium film with a thickness in the range of 28-350 nm induced by femtosecond laser radiation (λ = 1026 nm, ν = 200 kHz, τ = 232 fs). The period, height, morphology and chemical composition of TLIPSS as a function of the metal film thickness and focusing configuration are investigated. The growth of TLIPSS period from 678 nm to 950 nm with increasing thickness of the film has been explained by a formation of oxides with different stoichiometry composition. So, the CrO oxide prevails in the composition for the case of TLIPSS formed on thin films which have the minimal period, whereas CrO oxide is dominant in the case of TLIPSS formed on thick chromium films which have the maximal period value. The results obtained are in agreement with numerical modeling of a period defined by the interference between an incident radiation and a scattered one from a single oxide ridge with a different chemical composition.
The paper presents a novel three-dimensional quasi-continuous shape sensor based on an FBG array inscribed by femtosecond laser pulses into a 7-core optical fiber with a polyimide protective coating. The measured bending sensitivity of individual FBGs ranges from 0.046 nm/m −1 to 0.049 nm/m −1. It is shown that the sensor allows for reconstructing 2and 3-dimensional shapes with high accuracy. Due to the high value of the core aperture and individual calibration of each FBG we were able to measure the smallest reported bending radii down to 2.6 mm with a record accuracy of ∼1%. Moreover, we investigate the magnitude of the errors of curves reconstruction and errors associated with measurement of curvature radii in the range from 2.6 to 500 mm. The main factors affecting the accuracy of measurements are also discussed. The temperature resistance of both the inscribed FBG structures and of the protective coating, along with the high mechanical strength of the polyimide, makes it possible to use the sensor in harsh environments or in medical and composite material applications.
In this article, we review recent advances in the technology of writing fiber Bragg gratings (FBGs) in selected cores of multicore fibers (MCFs) by using femtosecond laser pulses. The writing technology of such a key element as the FBG opens up wide opportunities for the creation of next generation fiber lasers and sensors based on MCFs. The advantages of the technology are shown by using the examples of 3D shape sensors, acoustic emission sensors with spatially multiplexed channels, as well as multicore fiber Raman lasers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.