Many efforts have been made for revealing the decision-making process of black-box learning machines such as deep neural networks, resulting in useful local and global explanation methods. For local explanation, stochasticity is known to help: a simple method, called SmoothGrad, has improved the visual quality of gradient-based attribution by adding noise to the input space and averaging the explanations of the noisy inputs. In this paper, we extend this idea and propose NoiseGrad that enhances both local and global explanation methods. Specifically, NoiseGrad introduces stochasticity in the weight parameter space, such that the decision boundary is perturbed. NoiseGrad is expected to enhance the local explanation, similarly to SmoothGrad, due to the dual relationship between the input perturbation and the decision boundary perturbation. We evaluate NoiseGrad and its fusion with SmoothGrad - FusionGrad - qualitatively and quantitatively with several evaluation criteria, and show that our novel approach significantly outperforms the baseline methods. Both NoiseGrad and FusionGrad are method-agnostic and as handy as SmoothGrad using a simple heuristic for the choice of the hyperparameter setting without the need of fine-tuning.
Attribution methods remain a practical instrument that is used in real-world applications to explain the decision-making process of complex learning machines. It has been shown that a simple method called SmoothGrad can effectively reduce the visual diffusion of gradient-based attribution methods and has established itself among both researchers and practitioners. What remains unexplored in research, however, is how explanations can be improved by introducing stochasticity to the model weights. In the light of this, we introduce -NoiseGrad -a stochastic, method-agnostic explanation-enhancing method that adds noise to the weights instead of the input data. We investigate our proposed method through various experiments including different datasets, explanation methods and network architectures and conclude that NoiseGrad (and its extension NoiseGrad++) with multiplicative Gaussian noise offers a clear advantage compared to SmoothGrad on several evaluation criteria. We connect our proposed method to Bayesian Learning and provide the user with a heuristic for choosing hyperparameters.
Проблема управления сохранением историко-культурного наследия в региональном разрезе 1) Центр социологии управления и социальных технологий Федеральный научно-исследовательский социологический центр Российской академии наук ул. Кржижановского, д. 24/35, корп. 5,
The utilization of pre-trained networks, especially those trained on ImageNet, has become a common practice in Computer Vision. However, prior research has indicated that a significant number of images in the ImageNet dataset contain watermarks, making pre-trained networks susceptible to learning artifacts such as watermark patterns within their latent spaces. In this paper, we aim to assess the extent to which popular pre-trained architectures display such behavior and to determine which classes are most affected. Additionally, we examine the impact of watermarks on the extracted features. Contrary to the popular belief that the Chinese logographic watermarks impact the "carton" class only, our analysis reveals that a variety of ImageNet classes, such as "monitor", "broom", "apron" and "safe" rely on spurious correlations. Finally, we propose a simple approach to mitigate this issue in fine-tuned networks by ignoring the encodings from the feature-extractor layer of ImageNet pre-trained networks that are most susceptible to watermark imprints.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.