The evaluation of explanation methods is a research topic that has not yet been explored deeply, however, since explainability is supposed to strengthen trust in artificial intelligence, it is necessary to systematically review and compare explanation methods in order to confirm their correctness. Until now, no tool exists that exhaustively and speedily allows researchers to quantitatively evaluate explanations of neural network predictions. To increase transparency and reproducibility in the field, we therefore built Quantus -a comprehensive, open-source toolkit in Python that includes a growing, well-organised collection of evaluation metrics and tutorials for evaluating explainable methods. The toolkit has been thoroughly tested and is available under open source license on PyPi (or on https://github.com/understandable-machine-intelligence-lab/quantus/).
Attribution methods remain a practical instrument that is used in real-world applications to explain the decision-making process of complex learning machines. It has been shown that a simple method called SmoothGrad can effectively reduce the visual diffusion of gradient-based attribution methods and has established itself among both researchers and practitioners. What remains unexplored in research, however, is how explanations can be improved by introducing stochasticity to the model weights. In the light of this, we introduce -NoiseGrad -a stochastic, method-agnostic explanation-enhancing method that adds noise to the weights instead of the input data. We investigate our proposed method through various experiments including different datasets, explanation methods and network architectures and conclude that NoiseGrad (and its extension NoiseGrad++) with multiplicative Gaussian noise offers a clear advantage compared to SmoothGrad on several evaluation criteria. We connect our proposed method to Bayesian Learning and provide the user with a heuristic for choosing hyperparameters.
The utilization of pre-trained networks, especially those trained on ImageNet, has become a common practice in Computer Vision. However, prior research has indicated that a significant number of images in the ImageNet dataset contain watermarks, making pre-trained networks susceptible to learning artifacts such as watermark patterns within their latent spaces. In this paper, we aim to assess the extent to which popular pre-trained architectures display such behavior and to determine which classes are most affected. Additionally, we examine the impact of watermarks on the extracted features. Contrary to the popular belief that the Chinese logographic watermarks impact the "carton" class only, our analysis reveals that a variety of ImageNet classes, such as "monitor", "broom", "apron" and "safe" rely on spurious correlations. Finally, we propose a simple approach to mitigate this issue in fine-tuned networks by ignoring the encodings from the feature-extractor layer of ImageNet pre-trained networks that are most susceptible to watermark imprints.
The recent trend of integrating multi-source Chest X-Ray datasets to improve automated diagnostics raises concerns that models learn to exploit source-specific correlations to improve performance by recognizing the source domain of an image rather than the medical pathology. We hypothesize that this effect is enforced by and leverages label-imbalance across the source domains, i.e, prevalence of a disease corresponding to a source. Therefore, in this work, we perform a thorough study of the effect of label-imbalance in multi-source training for the task of pneumonia detection on the widely used ChestX-ray14 and CheXpert datasets. The results highlight and stress the importance of using more faithful and transparent self-explaining models for automated diagnosis, thus enabling the inherent detection of spurious learning. They further illustrate that this undesirable effect of learning spurious correlations can be reduced considerably when ensuring label-balanced source domain datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.