Emission spectral properties and quantum efficiency of upconversion particles NaYF 4 , SrF 2 , LaF 3 , BaF 2 и CaF 2 , doped with rare earth ions pair Yb 3+ -Er 3+ were studied using continuous wave (CW) and pulsed periodic excitation modes in the near infrared (NIR) spectral range. Analysis of the obtained results showed that the intensity ratio of upconversion luminescence in green and red spectral ranges depends on excitation pulse duration. Thus, by changing the pulse duration the spectral properties of upconversion luminescence can be controlled. Crystals with higher phonon energy are more sensitive to the change of pumping mode. Interpretation of results was performed on the rate equation model basis. Using numerical methods for all energy levels involved in the upconversion process the population and depopulation dynamics were obtained with respect to the duration of the excitation pulses. It was shown that about 30 ms was required for the complete population of 4 F 9/2 state, from which the luminescence in the red spectral range occurs. When the pulse duration was less than 30 ms, the 4 F 9/2 population did not reach a steady state and the intensity of the luminescence in the red part of the spectrum was reduced. The theoretical dependence of the upconversion luminescence intensity in the green and red ranges of the excitation pulse duration for NaYF 4 :Yb 0.2 -Er 0.02 composition was obtained and demonstrates good agreement with the experimental results.
Upconversion nanoparticles have attracted considerable attention as luminescent markers for bioimaging and sensing due to their capability to convert near-infrared (NIR) excitation into visible or NIR luminescence. However, the wavelength of about 970 nm is commonly used for the upconversion luminescence excitation, where the strong absorption of water is observed, which can lead to laser-induced overheating effects. One of the strategies for avoiding such laser-induced heating involves shifting the excitation into shorter wavelengths region. However, the influence of wavelength change on luminescent images quality has not been investigated yet. In this work, we compare wavelengths of 920, 940 and 970 nm for upconversion luminescence excitation in the thickness of biological tissues in terms of detected signal intensity and obtained image quality (contrast and signal-to-background ratio). Studies on biological tissue phantoms with various scattering and absorbing properties were performed to analyze the influence of optical parameters on the depth and contrast of the images obtained under 920–970 nm excitation. It was shown that at the same power the excitation wavelength shift reduces the detected signal intensity and the resulting image contrast. Visualization of biological tissue samples using shorter excitation wavelengths 920 and 940 nm also reduces signal-to-background ratio (S/B) of the obtained images. The S/B of the obtained images amounted to 2, 6 and 8 for 920, 940 and 970 nm, respectively. It was demonstrated that pulse-periodic excitation mode is preferable for obtaining high quality luminescent images of biological tissues deep layers and minimize overheating. Short pulse durations (duty cycle 20%) don’t result in heating even for 1 W cm−2 pumping power density and allow obtaining high luminescence intensity, which provides good images quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.