The ABC drug transporters, including ABCG2, are well known for their ability to efflux a wide spectrum of chemotherapeutic agents, thereby conferring a multidrug-resistant phenotype. However, studies over the past several years suggest that the ABC transporters may play additional role(s) in cell survival in the face of stress inducers that are not ABCG2 substrates (i.e., nutrient deprivation, ionizing radiation, rapamycin). The mechanism by which this occurs is largely unknown. In the present study, using several cancer cell lines and their ABCG2-overexpressing sublines, we show that cells overexpressing ABCG2 were more resistant to these stressors. This resistance was associated with an elevated level of autophagy flux, as measured by a higher rate of SQSTM1/p62 degradation and greater accumulation of LC3-II when compared to parental cells. Knockdown of ABCG2 reduced autophagic activity in resistant cells to a level similar to that observed in parental cells, confirming that the enhanced autophagy was ABCG2-dependent. Moreover, using cell viability, apoptosis, and clonogenic assays, we demonstrated that the ABCG2-expressing cells were more resistant to amino acid starvation and radiation-induced cell death. Importantly, knockdown of the critical autophagy factors ATG5 and ATG7 greatly reduced cell survival, verifying that enhanced autophagy was critical for this effect. Taken together, these data indicate that autophagy induced by various stressors is enhanced/accelerated in the presence of ABCG2, resulting in delayed cell death and enhanced cell survival. This defines a new role for this transporter, one with potential clinical significance.
Alternative splicing of pre-mRNA contributes significantly to human proteomic complexity, playing a key role in development, gene expression and, when aberrant, human disease onset. Many of the factors involved in alternative splicing have been identified, but little is known about their regulation. Here we report that caffeine regulates alternative splicing of a subset of cancer-associated genes, including the tumor suppressor KLF6. This regulation is at the level of splice site selection, occurs rapidly and reversibly, and is concentration dependent. We have recapitulated caffeine-induced alternative splicing of KLF6 using a cell-based minigene assay and identified a "caffeine response element" within the KLF6 intronic sequence. Significantly, a chimeric minigene splicing assay demonstrated that this caffeine response element is functional in a heterologous context; similar elements exist within close proximity to caffeine-regulated exons of other genes in the subset. Furthermore, the SR splicing factor, SC35, was shown to be required for induction of the alternatively spliced KLF6 transcript. Importantly, SC35 is markedly induced by caffeine, and overexpression of SC35 is sufficient to mimic the effect of caffeine on KLF6 alternative splicing. Taken together, our data implicate SC35 as a key player in caffeine-mediated splicing regulation. This novel effect of caffeine provides a valuable tool for dissecting the regulation of alternative splicing of a large gene subset and may have implications with respect to splice variants associated with disease states.Alternative splicing of pre-mRNA is an essential process by which eukaryotes generate functionally diverse isoforms from a single gene through the selective joining of different exons. This process responds to developmental and environmental cues, contributing substantially to cell-specific and tissue-specific gene expression; it is estimated that over 60% of human genes are alternatively spliced (36). Given the pervasive and profound involvement of alternative splicing in multiple cellular processes, it is clear that the choice of splice site can have major phenotypic consequences, and defects in the splicing pathway are associated with a variety of disease states. Indeed, as many as 50% of human genetic diseases arise from mutations affecting splicing choices (32). For example, it has recently been demonstrated that many cancer-associated genes are regulated by alternative splicing and that a number of splice variants appear to be unique to the malignant state (53, 57). Whether these splice variants play a role in carcinogenesis or tumor maintenance remains to be determined, but their consistent association with the malignant state suggests, at the very least, a clear value as diagnostic indicators and a potential as therapeutic targets (8,22). Therefore, a better understanding of the etiology of these cancer splice variants has become an imperative.Decades of elegant studies have defined the basic splicing mechanism, which requires the interaction of spl...
ABCG2 is an ATP-binding-cassette (ABC) transporter that confers multidrug resistance (MDR) to tumor cells by extruding a broad variety of chemotherapeutic agents, ultimately leading to failure of cancer therapy. Thus, the down-regulation of ABCG2 expression and/or function has been proposed as part of a regimen to improve cancer therapeutic efficacy. In this study, we found that a group of xanthines including caffeine, theophylline, and dyphylline can dramatically decrease ABCG2 protein in cells that have either moderate (BeWo, a placental choriocarcinoma cell line) or high (MCF-7/MX100, a breast cancer drug-resistant cell subline) levels of ABCG2 expression. This down-regulation is time-dependent, dose-dependent, and reversible. Using lysosomal inhibitors, we found that xanthines decreased ABCG2 by inducing its rapid internalization and lysosome-mediated degradation. As a consequence, caffeine treatment significantly increased the retention of an established ABCG2 substrate in MCF-7/MX100 cells but not in parental MCF-7 cells and sensitized the MDR cells to the chemotherapeutic agent mitoxantrone (MX); combination treatment with MX and caffeine decreased the IC 50 of MX ϳ10-fold and induced a greater degree of apoptotic cell death than MX treatment alone. Taken together, our results describe a novel function for this large class of therapeutically relevant compounds and suggest that a subset of xanthines could be developed as combination therapy to improve the efficacy of anticancer drugs that are ABCG2 substrates.
Background: Caffeine regulates alternative splicing by increasing SRSF2, normally constrained by a negative feedback loop. Results: Caffeine blocks nonsense-mediated decay, induces 3Ј UTR alternative splicing, and down-regulates SRSF2-targeting microRNAs, thereby breaking the negative feedback loop to increase SRSF2. Conclusion: Caffeine modulates multiple post-transcriptional processes to increase SRSF2. Significance: This study expands our understanding of SRSF2 regulation, and may provide insight into SRSF2 dysregulation in disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.