Background: Preclinical studies suggest that for complete midsubstance anterior cruciate ligament (ACL) injuries, a suture repair of the ACL augmented with a protein implant placed in the gap between the torn ends (bridge-enhanced ACL repair [BEAR]) may be a viable alternative to ACL reconstruction (ACLR). Hypothesis: We hypothesized that patients treated with BEAR would have a noninferior patient-reported outcomes (International Knee Documentation Committee [IKDC] Subjective Score; prespecified noninferiority margin, –11.5 points) and instrumented anteroposterior (AP) knee laxity (prespecified noninferiority margin, +2-mm side-to-side difference) and superior muscle strength at 2 years after surgery when compared with patients who underwent ACLR with autograft. Study Design: Randomized controlled trial; Level of evidence, 1. Methods: One hundred patients (median age, 17 years; median preoperative Marx activity score, 16) with complete midsubstance ACL injuries were enrolled and underwent surgery within 45 days of injury. Patients were randomly assigned to receive either BEAR (n = 65) or autograft ACLR (n = 35 [33 with quadrupled semitendinosus-gracilis and 2 with bone–patellar tendon–bone]). Outcomes—including the IKDC Subjective Score, the side-to-side difference in instrumented AP knee laxity, and muscle strength—were assessed at 2 years by an independent examiner blinded to the procedure. Patients were unblinded after their 2-year visit. Results: In total, 96% of the patients returned for 2-year follow-up. Noninferiority criteria were met for both the IKDC Subjective Score (BEAR, 88.9 points; ACLR, 84.8 points; mean difference, 4.1 points [95% CI, –1.5 to 9.7]) and the side-to-side difference in AP knee laxity (BEAR, 1.61 mm; ACLR, 1.77 mm; mean difference, –0.15 mm [95% CI, –1.48 to 1.17]). The BEAR group had a significantly higher mean hamstring muscle strength index than the ACLR group at 2 years (98.2% vs 63.2%; P < .001). In addition, 14% of the BEAR group and 6% of the ACLR group had a reinjury that required a second ipsilateral ACL surgical procedure ( P = .32). Furthermore, the 8 patients who converted from BEAR to ACLR in the study period and returned for the 2-year postoperative visit had similar primary outcomes to patients who had a single ipsilateral ACL procedure. Conclusion: BEAR resulted in noninferior patient-reported outcomes and AP knee laxity and superior hamstring muscle strength when compared with autograft ACLR at 2-year follow-up in a young and active cohort. These promising results suggest that longer-term studies of this technique are justified. Registration: NCT02664545 (ClinicalTrials.gov identifier)
Background:This study assessed the safety of the newly developed bridge-enhanced anterior cruciate ligament (ACL) repair (BEAR), which involves suture repair of the ligament combined with a bioactive scaffold to bridge the gap between the torn ligament ends. As the intra-articular environment is complex in its response to implanted materials, this study was designed to determine whether there would be a significant rate of adverse reaction to the implanted scaffold.Hypothesis:The primary hypothesis was that the implanted scaffold would not result in a deep joint infection (arthrocentesis with positive culture) or significant inflammation (clinical symptoms justifying arthrocentesis but negative culture). The secondary hypotheses were that patients treated with BEAR would have early postoperative outcomes that were similar to patients treated with ACL reconstruction with an autologous hamstring graft.Study Design:Cohort study; Level of evidence, 2.Methods:A total of 20 patients were enrolled in this nonrandomized, first-in-human study. Ten patients received BEAR treatment and 10 received a hamstring autograft ACL reconstruction. The BEAR procedure was performed by augmenting a suture repair with a proprietary scaffold, the BEAR scaffold, placed in between the torn ends of the ACL at the time of suture repair. The BEAR scaffold is to our knowledge the only device that fills the gap between the torn ligament ends to have current Investigational Device Exemption approval from the Food and Drug Administration. Ten milliliters of autologous whole blood were added to the scaffold prior to wound closure. Outcomes were assessed at 3 months postoperatively. The outcomes measures included postoperative pain, muscle atrophy, loss of joint range of motion, and implant failure (designated by an International Knee Documentation Committee grade C or D Lachman test and/or an absence of continuous ACL tissue on magnetic resonance images).Results:There were no joint infections or signs of significant inflammation in either group. There were no differences between groups in effusion or pain, and no failures by Lachman examination criteria (BEAR, 8 grade A and 2 grade B; ACL reconstruction, 10 grade A). Magnetic resonance images from all of the BEAR and ACL-reconstructed patients demonstrated a continuous ACL or intact graft. In addition, hamstring strength at 3 months was significantly better in the BEAR group than in the hamstring autograft group (mean ± SD: 77.9% ± 14.6% vs 55.9% ± 7.8% of the contralateral side; P < .001).Conclusion:The results of this study suggest that the BEAR procedure may have a rate of adverse reactions low enough to warrant a study of efficacy in a larger group of patients.
Background:Bridge-enhanced anterior cruciate ligament repair (BEAR) combines suture repair of the anterior cruciate ligament (ACL) with a specific extracellular matrix scaffold (the BEAR scaffold) that is placed in the gap between the torn ends of the ACL to facilitate ligament healing.Purpose/Hypothesis:The purpose of this study was to report the 12- and 24-month outcomes of patients who underwent the BEAR procedure compared with a nonrandomized concurrent control group who underwent ACL reconstruction (ACLR) with an autograft. We hypothesized that the BEAR group would have physical examination findings, patient-reported outcomes, and adverse events that were similar to those of the ACLR group.Study Design:Cohort study; Level of evidence, 2.Methods:Ten patients underwent BEAR, and 10 underwent ACLR with a 4-stranded hamstring autograft. At 24 months, 9 of the 10 BEAR patients and 7 of the 10 ACLR patients completed a study visit. Outcomes reported included International Knee Documentation Committee (IKDC) subjective and objective results, knee anteroposterior (AP) laxity findings via an arthrometer, and functional outcomes.Results:There were no graft or repair failures in the first 24 months after surgery. The IKDC subjective scores in both groups improved significantly from baseline (P < .0001) at 12 and 24 months, to 84.6 ± 17.2 in the ACLR group and to 91.7 ± 11.7 in the BEAR group. An IKDC objective grade of A (normal) was found in 44% of patients in the BEAR group and in 29% of patients in the ACLR group at 24 months; no patients in either group had C (abnormal) or D (severely abnormal) grades. Arthrometer testing demonstrated mean side-to-side differences in AP laxity that were similar in the 2 groups at 24 months (BEAR, 1.94 ± 2.08 mm; ACLR, 3.14 ± 2.66 mm). Functional hop testing results were similar in the 2 groups at 12 and 24 months after surgery. Hamstring strength indices were significantly higher in the BEAR group compared with the ACLR group (P = .0001).Conclusion:In this small, first-in-human study, BEAR produced similar outcomes to ACLR with a hamstring autograft. BEAR may result in knee stability and patient-reported outcomes at 2 years sufficient to warrant longer term studies of efficacy in larger groups of patients.
Diffusion-weighted MRI has the potential to provide important new insights into physiological and microstructural properties of the body. The Intra-Voxel Incoherent Motion (IVIM) model relates the observed DW-MRI signal decay to parameters that reflect blood flow in the capillaries (D*), capillaries volume fraction (f), and diffusivity (D). However, the commonly used, independent voxel-wise fitting of the IVIM model leads to imprecise parameter estimates, which has hampered their practical usage. In this work, we improve the precision of estimates by introducing a spatially-constrained Incoherent Motion (IM) model of DW-MRI signal decay. We also introduce an efficient iterative “fusion bootstrap moves” (FBM) solver that enables precise parameter estimates with this new IM model. This solver updates parameter estimates by applying a binary graph-cut solver to fuse the current estimate of parameter values with a new proposal of the parameter values into a new estimate of parameter values that better fits the observed DW-MRI data. The proposals of parameter values are sampled from the independent voxel-wise distributions of the parameter values with a model-based bootstrap resampling of the residuals. We assessed both the improvement in the precision of the Incoherent Motion parameter estimates and the characterization of heterogeneous tumor environments by analyzing simulated and in-vivo abdominal DW-MRI data of 30 patients, and in-vivo DW-MRI data of three patients with musculoskeletal lesions. We found our IM-FBM reduces the relative root mean square error of the D* parameter estimates by 80%, and of the f and D parameter estimates by 50% compared to the IVIM model with the simulated data. Similarly, we observed that our IM-FBM method significantly reduces the coefficient of variation of parameter estimates of the D* parameter by 43%, the f parameter by 37%, and the D parameter by 17% compared to the IVIM model (paired Student’s t-test, p<0.0001). In addition, we found our IM-FBM method improved the characterization of heterogeneous musculoskeletal lesions by means of increased contrast-to-noise ratio of 19.3%. The IM model and FBM solver combined, provide more precise estimate of the physiological model parameter values that describing the DW-MRI signal decay and a better mechanism for characterizing heterogeneous lesions than does the independent voxel-wise IVIM model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.