Peatlands store large amounts of terrestrial carbon and any changes to their carbon balance could cause large changes in the greenhouse gas (GHG) balance of the Earth's atmosphere. There is still much uncertainty about how the GHG dynamics of peatlands are affected by climate and land use change. Current field-based methods of estimating annual carbon exchange between peatlands and the atmosphere include flux chambers and eddy covariance towers. However, remote sensing has several advantages over these traditional approaches in terms of cost, spatial coverage and accessibility to remote locations. In this paper, we outline the basic principles of using remote sensing to estimate ecosystem carbon fluxes and explain the range of satellite data available for such estimations, considering the indices and models developed to make use of the data. Past studies, which have used remote sensing data in comparison with ground-based calculations of carbon fluxes over Northern peatland landscapes, are discussed, as well as the challenges of working with remote sensing on peatlands. Finally, we suggest areas in need of future work on this topic. We conclude that the application of remote sensing to models of carbon fluxes is a viable research method over Northern peatlands but further work is needed to develop more comprehensive carbon cycle models and to improve the long-term reliability of models, particularly on peatland sites undergoing restoration.
Peatlands provide important ecosystem services including carbon storage and biodiversity conservation. Remote sensing shows potential for monitoring peatlands, but most off-the-shelf data products are developed for unsaturated environments and it is unclear how well they can perform in peatland ecosystems. Sphagnum moss is an important peatland genus with specific characteristics which can affect spectral reflectance, and we hypothesized that the prevalence of Sphagnum in a peatland could affect the spectral signature of the area. This study combines results from both laboratory and field experiments to assess the relationship between spectral indices and the moisture content and GPP of peatland (blanket bog) vegetation species. The aim was to consider how well the selected indices perform under a range of conditions, and whether Sphagnum has a significant impact on the relationships tested. We found that both water indices tested (NDWI and fWBI) were sensitive to the water content changes in Sphagnum moss in the laboratory, and there was little difference between them. Most of the vegetation indices tested (the NDVI, EVI, SIPI and CIm)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.