Transmission of plant pathogens by insect vectors is a complex biological process involving interactions between the plant, insect, and pathogen. Pathogen-induced plant responses can include changes in volatile and nonvolatile secondary metabolites as well as major plant nutrients. Experiments were conducted to understand how a plant pathogenic bacterium, Candidatus Liberibacter asiaticus (Las), affects host preference behavior of its psyllid ( Diaphorina citri Kuwayama) vector. D. citri were attracted to volatiles from pathogen-infected plants more than to those from non-infected counterparts. Las-infected plants were more attractive to D. citri adults than non-infected plants initially; however after feeding, psyllids subsequently dispersed to non-infected rather than infected plants as their preferred settling point. Experiments with Las-infected and non-infected plants under complete darkness yielded similar results to those recorded under light. The behavior of psyllids in response to infected versus non-infected plants was not influenced by whether or not they were carriers of the pathogen. Quantification of volatile release from non-infected and infected plants supported the hypothesis that odorants mediate psyllid preference. Significantly more methyl salicylate, yet less methyl anthranilate and D-limonene, was released by infected than non-infected plants. Methyl salicylate was attractive to psyllids, while methyl anthranilate did not affect their behavior. Feeding on citrus by D. citri adults also induced release of methyl salicylate, suggesting that it may be a cue revealing location of conspecifics on host plants. Infected plants were characterized by lower levels of nitrogen, phosphorus, sulfur, zinc, and iron, as well as, higher levels of potassium and boron than non-infected plants. Collectively, our results suggest that host selection behavior of D. citri may be modified by bacterial infection of plants, which alters release of specific headspace volatiles and plant nutritional contents. Furthermore, we show in a laboratory setting that this apparent pathogen-mediated manipulation of vector behavior may facilitate pathogen spread.
The duration of the evolutionary association between a pathogen and vector can be inferred based on the strength of their mutualistic interactions. A well-adapted pathogen is likely to confer some benefit or, at a minimum, exhibit low pathogenicity toward its host vector. Coevolution of the two toward a mutually beneficial association appears to have occurred between the citrus greening disease pathogen, Candidatus Liberibacter asiaticus (Las), and its insect vector, the Asian citrus psyllid, Diaphorina citri (Kuwayama). To better understand the dynamics facilitating transmission, we evaluated the effects of Las infection on the fitness of its vector. Diaphorina citri harboring Las were more fecund than their uninfected counterparts; however, their nymphal development rate and adult survival were comparatively reduced. The finite rate of population increase and net reproductive rate were both greater among Las-infected D. citri as compared with uninfected counterparts, indicating that overall population fitness of infected psyllids was improved given the greater number of offspring produced. Previous reports of transovarial transmission, in conjunction with increased fecundity and population growth rates of Las-positive D. citri found in the current investigation, suggest a long evolutionary relationship between pathogen and vector. The survival of Las-infected adult D. citri was lower compared with uninfected D. citri, which suggests that there may be a fitness trade-off in response to Las infection. A beneficial effect of a plant pathogen on vector fitness may indicate that the pathogen developed a relationship with the insect before secondarily moving to plants.
Huanglongbing (HLB) or citrus greening disease is a destructive disease of citrus worldwide, which is associated with Candidatus Liberibacter asiaticus. This phloem-limited fastidious pathogen is transmitted by the Asian citrus psyllid, Diaphorina citri, and appears to be an intracellular pathogen that maintains an intimate association with the psyllid or the plant throughout its life cycle. The molecular basis of the interaction of this pathogen with its hosts is not well understood. We hypothesized that, during infection, Ca. L. asiaticus differentially expresses the genes critical for its survival and/or pathogenicity in either host. To test this hypothesis, quantitative reverse transcription-polymerase chain reaction was performed to compare the gene expression of Ca. L. asiaticus in planta and in psyllid. Overall, 381 genes were analysed for their gene expression in planta and in psyllid. Among them, 182 genes were up-regulated in planta compared with in psyllid (P < 0.05), 16 genes were up-regulated in psyllid (P < 0.05) and 183 genes showed no statistically significant difference (P ≥ 0.05) in expression between in planta and in psyllid. Our study indicates that the expression of the Ca. L. asiaticus genes involved in transcriptional regulation, transport system, secretion system, flagella assembly, metabolic pathway and stress resistance are changed significantly in a host-specific manner to adapt to the distinct environments of plant and insect. To our knowledge, this is the first large-scale study to evaluate the differential expression of Ca. L. asiaticus genes in a plant host and its insect vector.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.