Epidemiological data demonstrate that Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) Alpha and Delta are more transmissible, infectious, and pathogenic than previous variants. Phenotypic properties of VOC remain understudied. Here, we provide an extensive functional study of VOC Alpha replication and cell entry phenotypes assisted by reverse genetics, mutational mapping of spike in lentiviral pseudotypes, viral and cellular gene expression studies, and infectivity stability assays in an enhanced range of cell and epithelial culture models. In almost all models, VOC Alpha spread less or equally efficiently as ancestral (B.1) SARS-CoV-2. B.1. and VOC Alpha shared similar susceptibility to serum neutralization. Despite increased relative abundance of specific sgRNAs in the context of VOC Alpha infection, immune gene expression in infected cells did not differ between VOC Alpha and B.1. However, inferior spreading and entry efficiencies of VOC Alpha corresponded to lower abundance of proteolytically cleaved spike products presumably linked to the T716I mutation. In addition, we identified a bronchial cell line, NCI-H1299, which supported 24-fold increased growth of VOC Alpha and is to our knowledge the only cell line to recapitulate the fitness advantage of VOC Alpha compared to B.1. Interestingly, also VOC Delta showed a strong (595-fold) fitness advantage over B.1 in these cells. Comparative analysis of chimeric viruses expressing VOC Alpha spike in the backbone of B.1, and vice versa, showed that the specific replication phenotype of VOC Alpha in NCI-H1299 cells is largely determined by its spike protein. Despite undetectable ACE2 protein expression in NCI-H1299 cells, CRISPR/Cas9 knock-out and antibody-mediated blocking experiments revealed that multicycle spread of B.1 and VOC Alpha required ACE2 expression. Interestingly, entry of VOC Alpha, as opposed to B.1 virions, was largely unaffected by treatment with exogenous trypsin or saliva prior to infection, suggesting enhanced resistance of VOC Alpha spike to premature proteolytic cleavage in the extracellular environment of the human respiratory tract. This property may result in delayed degradation of VOC Alpha particle infectivity in conditions typical of mucosal fluids of the upper respiratory tract that may be recapitulated in NCI-H1299 cells closer than in highly ACE2-expressing cell lines and models. Our study highlights the importance of cell model evaluation and comparison for in-depth characterization of virus variant-specific phenotypes and uncovers a fine-tuned interrelationship between VOC Alpha- and host cell-specific determinants that may underlie the increased and prolonged virus shedding detected in patients infected with VOC Alpha.
Cell‐intrinsic responses mounted in PBMCs during mild and severe COVID‐19 differ quantitatively and qualitatively. Whether they are triggered by signals emitted by productively infected cells of the respiratory tract or result from physical interaction with virus particles remains unclear. Here, we analyzed susceptibility and expression profiles of PBMCs from healthy donors upon ex vivo exposure to SARS‐CoV and SARS‐CoV‐2. In line with the absence of detectable ACE2 receptor expression, human PBMCs were refractory to productive infection. RT–PCR experiments and single‐cell RNA sequencing revealed JAK/STAT‐dependent induction of interferon‐stimulated genes (ISGs) but not proinflammatory cytokines. This SARS‐CoV‐2‐specific response was most pronounced in monocytes. SARS‐CoV‐2‐RNA‐positive monocytes displayed a lower ISG signature as compared to bystander cells of the identical culture. This suggests a preferential invasion of cells with a low ISG baseline profile or delivery of a SARS‐CoV‐2‐specific sensing antagonist upon efficient particle internalization. Together, nonproductive physical interaction of PBMCs with SARS‐CoV‐2‐ and, to a much lesser extent, SARS‐CoV particles stimulate JAK/STAT‐dependent, monocyte‐accentuated innate immune responses that resemble those detected in vivo in patients with mild COVID‐19.
Cell-intrinsic responses mounted in vivo in PBMCs during mild and severe COVID-19 differ quantitatively and qualitatively. Whether they are triggered by signals emitted by productively infected cells of the respiratory tract or are, at least partially, resulting from physical interaction with virus particles, remains unclear. Here, we analyzed susceptibility and expression profiles of PBMCs from healthy donors upon ex vivo exposure to SARS-CoV and SARS-CoV-2. In line with the absence of detectable ACE2 receptor expression, human PBMCs were refractory to productive infection. Bulk and single cell RNA-sequencing revealed JAK/STAT-dependent induction of interferon-stimulated genes, but not pro-inflammatory cytokines. This SARS-CoV-2-specific response was most pronounced in monocytes. SARS-CoV-2-RNA-positive monocytes displayed a lower ISG signature as compared to bystander cells of the identical culture. This suggests a preferential invasion of cells with a low ISG base-line profile or delivery of a SARS-CoV-2-specific sensing antagonist upon efficient particle internalization. Together, non-productive physical interaction of PBMCs with SARS-CoV-2- but not SARS-CoV particles stimulates JAK/STAT-dependent, monocyte-accentuated innate immune responses that resemble those detected in vivo in patients with mild COVID-19.
Epidemiological data demonstrate that SARS-CoV-2 variants of concern (VOC) B.1.1.7 and B.1.617.2 are more transmissible and infections are associated with a higher mortality than non-VOC virus infections. Phenotypic properties underlying their enhanced spread in the human population remain unknown. B.1.1.7 virus isolates displayed inferior or equivalent spread in most cell lines and primary cells compared to an ancestral B.1 SARS-CoV-2, and were outcompeted by the latter. Lower infectivity and delayed entry kinetics of B.1.1.7 viruses were accompanied by inefficient proteolytic processing of spike. B.1.1.7 viruses failed to escape from neutralizing antibodies, but slightly dampened induction of innate immunity. The bronchial cell line NCI-H1299 supported 24- and 595-fold increased growth of B.1.1.7 and B.1.617.2 viruses, respectively, in the absence of detectable ACE2 expression and in a spike-determined fashion. Superior spread in NCI-H1299 cells suggests that VOCs employ a distinct set of cellular cofactors that may be unavailable in standard cell lines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.