Transient gene expression (TGE) in mammalian cells at the reactor scale is becoming increasingly important for the rapid production of recombinant proteins. We improved a process for transient calcium phosphate-based transfection of HEK293-EBNA cells in a 1-3 L bioreactor volume. Cells were adapted to suspension culture using a commercially available medium (BioWhittaker, Walkersville, MD). Process parameters were optimized using a plasmid reporter vector encoding the enhanced green fluorescent protein (EGFP/CLONTECH, Palo Alto, CA, USA). Using GFP as a marker-protein, we observed by microscopic examination transfection efficiencies between 70-100%. Three different recombinant proteins were synthesized within a timeframe of 7 days from time of transfection to harvest. The first, a human recombinant IgG(1)-type antibody, was secreted into the supernatant of the cell culture and achieved a final concentration of >20 mg/L. An E. coli-derived DNA-binding protein remained intracellular, as expected, but accumulated to such a concentration that the lysate of cells, taken up into the entire culture volume, gave a concentration of 18 mg/L. The third protein, a transmembrane receptor, was expressed at 3-6 x 10(6) molecules/cell.
The 5-hydroxytryptamine receptor of type 3 was investigated by fluorescence correlation spectroscopy (FCS). Binding constants of fluorescently labeled ligands, the stoichiometry, and the mass of the receptor are readily accessible by this technique, while the duration of measurement is on the order of seconds to minutes. The receptor antagonist 1,2,3, 9-tetrahydro-3-[(5-methyl-1H-imidazol-4-yl)methyl]-9-(3-aminopropyl)- 4H-carbazol-4-one (GR-H) was labeled with the fluorophores rhodamine 6G, fluorescein, N-[7-nitrobenz-2-oxa-1,3-diazol-4-yl], and the cyanine dye Cy5. These labels cover a large part of the visible electromagnetic spectrum. It is shown that the photophysical and chemical properties have a direct influence on the measurement quality (duration of measurement, signal-to-noise ratio) and the ligand-receptor interactions (dissociation constants), respectively. This makes it necessary to choose a suitable label or a combination of labels for receptor studies. The affinities of the fluorescently labeled ligands determined by FCS were virtually identical to the values obtained by radioligand binding experiments. Moreover, the dissociation constant of a nonfluorescent receptor ligand was determined successfully by an FCS competition assay. The experimental results showed that only one antagonist binds to the receptor, in agreement with measurements previously published [Tairi et al. (1998) Biochemistry 37, 15850-15864].
The present paper highlights a new safety management program, MICE (Management, Information, Control and Emergency), which has been specifically adapted for the academic environment. The process starts with an exhaustive hazard inventory supported by a platform assembling specific hazards encountered in laboratories and their subsequent classification. A proof of concept is given by a series of implementations in the domain of chemistry targeting workplace health protection. The methodology is expressed through three examples to illustrate how the MICE program can be used to address safety concerns regarding chemicals, strong magnetic fields and nanoparticles in research laboratories. A comprehensive chemical management program is also depicted.
No abstract
The catalytic subunit of the cAMP-dependent protein kinase from Dictyostelium discoideum, PkaC, displays the same properties as its mammalian counterpart, except for being about twice as large in size. Sequence comparisons indicated the presence of a conserved alpha-helix (A-helix) within the N-terminal region of PkaC which could potentially establish close contacts with the catalytic core [Véron, M., et al. (1993) Proc. Natl. Acad. Sci. U.S.A. 90, 10618-10622]. We show in this report that a synthetic peptide with the A-helix sequence inhibits PKA activity, whereas unrelated peptides display no inhibitory activity. The inhibition seems competitive with respect to the kemptide substrate rather than due to binding to a secondary site. We further show by amino acid replacements that the last lysine of the A-helix sequence is involved in this specific inhibition. A model is proposed for the possible role of the A-helix.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.