The AMP-activated protein kinase (AMPK) is a critical regulator of energy balance at both the cellular and whole-body levels. Two upstream kinases have been reported to activate AMPK in cell-free assays, i.e., the tumor suppressor LKB1 and calmodulin-dependent protein kinase kinase. However, evidence that this is physiologically relevant currently only exists for LKB1. We now report that there is a significant basal activity and phosphorylation of AMPK in LKB1-deficient cells that can be stimulated by Ca2+ ionophores, and studies using the CaMKK inhibitor STO-609 and isoform-specific siRNAs show that CaMKKbeta is required for this effect. CaMKKbeta also activates AMPK much more rapidly than CaMKKalpha in cell-free assays. K(+)-induced depolarization in rat cerebrocortical slices, which increases intracellular Ca2+ without disturbing cellular adenine nucleotide levels, activates AMPK, and this is blocked by STO-609. Our results suggest a potential Ca(2+)-dependent neuroprotective pathway involving phosphorylation and activation of AMPK by CaMKKbeta.
Salicylate, a plant product, has been in medicinal use since ancient times. More recently it has been replaced by synthetic derivatives such as aspirin and salsalate, both rapidly broken down to salicylate in vivo. At concentrations reached in plasma following administration of salsalate, or aspirin at high doses, salicylate activates adenosine monophosphate-activated protein kinase (AMPK), a central regulator of cell growth and metabolism. Salicylate binds at the same site as the synthetic activator, A-769662, to cause allosteric activation and inhibition of dephosphorylation of the activating phosphorylation site, Thr172. In AMPK knockout mice, effects of salicylate to increase fat utilization and lower plasma fatty acids in vivo were lost. Our results suggest that AMPK activation could explain some beneficial effects of salsalate and aspirin in humans.The medicinal effects of willow bark have been known since the time of Hippocrates. The active component is salicylate, a hormone produced by plants in response to pathogen infection (1). For medicinal use it was largely replaced by aspirin (acetyl salicylate), which is rapidly broken down to salicylate in vivo (2, 3). Salicylate can also be administered as salsalate, which shows promise for treatment of insulin resistance and type 2 diabetes (4, 5). Aspirin and salicylate inhibit cyclo-oxygenases and hence prostanoid biosynthesis (6), as well as the protein kinase IKKβ in the NF-κB pathway (7). However, some effects of these drugs are still observed in mice deficient in these pathways (8).Adenosine monophosphate-activated protein kinase (AMPK) is a cellular energy sensor conserved throughout eukaryotes. This heterotrimeric enzyme is composed of catalytic α Europe PMC Funders Author ManuscriptsEurope PMC Funders Author Manuscripts subunits and regulatory β and γ subunits (9, 10). Once activated in response to metabolic stress, AMPK phosphorylates targets that switch off adenosine triphosphate (ATP) consuming processes, while switching on catabolic pathways that generate ATP. AMPK is activated >100-fold by phosphorylation at Thr172 in the α subunit by the tumour suppressor protein kinase, LKB1, or the Ca 2+ -dependent kinase, CaMKKβ (9, 10). Binding of AMP or adenosine diphosphate (ADP) to the γ subunit triggers a conformational change that promotes phosphorylation and inhibits dephosphorylation (11-15), causing a switch to the active form. Binding of AMP (but not ADP) to a second site (15) causes further allosteric activation, leading to >1,000-fold activation overall (16). Most drugs or xenobiotics that activate AMPK work by inhibiting mitochondrial ATP synthesis and increasing the concentration of AMP and ADP (17). However, a synthetic activator, A-769662 (18), which also causes allosteric activation and inhibits Thr172 dephosphorylation, binds directly to AMPK at distinct site(s) (19-21).Salicylate, but not aspirin, activated AMPK when applied to HEK-293 cells, with its effects being significant at 1 mM and above ( Fig. 1A; it appears that the estera...
Background: The AMP-activated protein kinase (AMPK) cascade is a sensor of cellular energy charge that acts as a 'metabolic master switch' and inhibits cell proliferation. Activation requires phosphorylation of Thr172 of AMPK within the activation loop by upstream kinases (AMPKKs) that have not been identified. Recently, we identified three related protein kinases acting upstream of the yeast homolog of AMPK. Although they do not have obvious mammalian homologs, they are related to LKB1, a tumor suppressor that is mutated in the human Peutz-Jeghers cancer syndrome. We recently showed that LKB1 exists as a complex with two accessory subunits, STRAD␣/ and MO25␣/.
SummaryRecent studies have demonstrated a strong relationship between aging-associated reductions in mitochondrial function, dysregulated intracellular lipid metabolism, and insulin resistance. Given the important role of the AMP-activated protein kinase (AMPK) in the regulation of fat oxidation and mitochondrial biogenesis, we examined AMPK activity in young and old rats and found that acute stimulation of AMPK-α2 activity by 5′-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) and exercise was blunted in skeletal muscle of old rats. Furthermore, mitochondrial biogenesis in response to chronic activation of AMPK with β-guanidinopropionic acid (β-GPA) feeding was also diminished in old rats. These results suggest that aging-associated reductions in AMPK activity may be an important contributing factor in the reduced mitochondrial function and dysregulated intracellular lipid metabolism associated with aging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.