Early cetaceans evolved from terrestrial quadrupeds to obligate swimmers, a change that is traditionally studied by functional analysis of the postcranial skeleton. Here we assess the evolution of cetacean locomotor behaviour from an independent perspective by looking at the semicircular canal system, one of the main sense organs involved in neural control of locomotion. Extant cetaceans are found to be unique in that their canal arc size, corrected for body mass, is approximately three times smaller than in other mammals. This reduces the sensitivity of the canal system, most plausibly to match the fast body rotations that characterize cetacean behaviour. Eocene fossils show that the new sensory regime, incompatible with terrestrial competence, developed quickly and early in cetacean evolution, as soon as the taxa are associated with marine environments. Dedicated agile swimming of cetaceans thus appeared to have originated as a rapid and fundamental shift in locomotion rather than as the gradual transition suggested by postcranial evidence. We hypothesize that the unparalleled modification of the semicircular canal system represented a key 'point of no return' event in early cetacean evolution, leading to full independence from life on land.
The whale ear, initially designed for hearing in air, became adapted for hearing underwater in less than ten million years of evolution. This study describes the evolution of underwater hearing in cetaceans, focusing on changes in sound transmission mechanisms. Measurements were made on 60 fossils of whole or partial skulls, isolated tympanics, middle ear ossicles, and mandibles from all six archaeocete families. Fossil data were compared with data on two families of modern mysticete whales and nine families of modern odontocete cetaceans, as well as five families of noncetacean mammals. Results show that the outer ear pinna and external auditory meatus were functionally replaced by the mandible and the mandibular fat pad, which posteriorly contacts the tympanic plate, the lateral wall of the bulla. Changes in the ear include thickening of the tympanic bulla medially, isolation of the tympanoperiotic complex by means of air sinuses, functional replacement of the tympanic membrane by a bony plate, and changes in ossicle shapes and orientation. Pakicetids, the earliest archaeocetes, had a land mammal ear for hearing in air, and used bone conduction underwater, aided by the heavy tympanic bulla. Remingtonocetids and protocetids were the first to display a genuine underwater ear where sound reached the inner ear through the mandibular fat pad, the tympanic plate, and the middle ear ossicles. Basilosaurids and dorudontids showed further aquatic adaptations of the ossicular chain and the acoustic isolation of the ear complex from the skull. The land mammal ear and the generalized modern whale ear are evolutionarily stable configurations, two ends of a process where the cetacean mandible might have been a keystone character.
2015): Craniodental and postcranial morphology of Indohyaenodon raoi from the early Eocene of India, and its implications for ecology, phylogeny, and biogeography of hyaenodontid mammals, Journal of Vertebrate PaleontologyTo link to this article: http://dx.ABSTRACT-New remains of the early Eocene hyaenodontid Indohyaenodon raoi are described from the Vastan Lignite Mine in Gujarat, western India, including the first known rostrum, upper dentition, and postcrania, substantially expanding our knowledge of the species and providing insights into its functional morphology and relationships. Craniodental morphology suggests that I. raoi had a broad diet, including non-vertebrate material as well as flesh of a diversity of prey species. Postcranial morphology is broadly similar to that of other early hyaenodontids and suggests a scansorial locomotor repertoire. Dental morphology indicates that I. raoi is closely related to other South Asian hyaenodontids, with shared features including strong cingula, narrow premolars, and a reduced P4 protocone. We present the most comprehensive phylogenetic analysis of Hyaenodontidae to date, which corroborates this relationship but finds South Asian hyaenodontids to be the stem of a group that includes most African hyaenodontids. This and other higher-level relationships within Hyaenodontidae are, however, weakly supported, and substantially different alternative hypotheses of relationships are not significantly less parsimonious, reflecting strong character conflict. Factors contributing to this conflict include the isolation of hyaenodontid faunas on different continents during much of the Eocene, canalization and simplification of carnivorous dentitions, and a lack of non-dental material for critical hyaenodontid groups. The new phylogeny is consistent with either an African or an Asian origin for the group.
The origin of whales (order Cetacea) is one of the best-documented examples of macroevolutionary change in vertebrates. As the earliest whales became obligately marine, all of their organ systems adapted to the new environment. The fossil record indicates that this evolutionary transition took less than 15 million years, and that different organ systems followed different evolutionary trajectories. Here we document the evolutionary changes that took place in the sound transmission mechanism of the outer and middle ear in early whales. Sound transmission mechanisms change early on in whale evolution and pass through a stage (in pakicetids) in which hearing in both air and water is unsophisticated. This intermediate stage is soon abandoned and is replaced (in remingtonocetids and protocetids) by a sound transmission mechanism similar to that in modern toothed whales. The mechanism of these fossil whales lacks sophistication, and still retains some of the key elements that land mammals use to hear airborne sound.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.