Absorption saturation due to surface plasmon resonance affects the optical limiting efficiency of metal nanoparticles (NPs) by raising the limiting threshold to higher laser fluences. It has been shown that in gold, compared to the larger NPs, smaller quantum clusters (QCs) exhibit better optical limiting with lower limiting thresholds due to the absence of absorption saturation. Here we report optical limiting properties of two novel materials, namely, nine-atom silver (Ag 9 ) QCs and graphitic carbon nitride (GCN) nanosheets. The relatively large nonlinear absorption of Ag 9 QCs compared to Ag NPs is revealed from openaperture Z-scan measurements carried out using 532 nm, 5 ns laser pulses. Optical nonlinearity in the QCs arises mostly from free carrier absorption and a relatively weak saturable absorption. The superior limiting efficiency of Ag 9 QCs is complemented by excellent chemical stability, which makes silver quantum clusters ideal candidates for optical limiting applications. The two-dimensional sheet-like structure of GCN is ideal for grafting metals and semiconductors, and we show that even though the nonlinearity of pristine GCN is low it can be improved substantially by grafting lightly with Ag 9 QCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.