The sterile insect technique (SIT) is an environment friendly and sustainable method to manage insect pests of economic importance through successive releases of sterile irradiated males of the targeted species to a defined area. A mating of a sterile male with a virgin wild female will result in no offspring, and ultimately lead to the suppression or eradication of the targeted population. Tsetse flies, vectors of African Trypanosoma, have a highly regulated and defined microbial fauna composed of three bacterial symbionts that may have a role to play in the establishment of Trypanosoma infections in the flies and hence, may influence the vectorial competence of the released sterile males. Sodalis bacteria seem to interact with Trypanosoma infection in tsetse flies. Field-caught tsetse flies of ten different taxa and from 15 countries were screened using PCR to detect the presence of Sodalis and Trypanosoma species and analyse their interaction. The results indicate that the prevalence of Sodalis and Trypanosoma varied with country and tsetse species. Trypanosome prevalence was higher in east, central and southern African countries than in west African countries. Tsetse fly infection rates with Trypanosoma vivax and T. brucei sspp were higher in west African countries, whereas tsetse infection with T. congolense and T. simiae, T. simiae (tsavo) and T. godfreyi were higher in east, central and south African countries. Sodalis prevalence was high in Glossina morsitans morsitans and G. pallidipes but absent in G. tachinoides. Double and triple infections with Trypanosoma taxa and coinfection of Sodalis and Trypanosoma were rarely observed but it occurs in some taxa and locations. A significant Chi square value (< 0.05) seems to suggest that Sodalis and Trypanosoma infection correlate in G. palpalis gambiensis, G. pallidipes and G. medicorum. Trypanosoma infection seemed significantly associated with an increased density of Sodalis in wild G. m. morsitans and G. pallidipes flies, however, there was no significant impact of Sodalis infection on trypanosome density.
Tsetse flies (Glossina spp.) house a population-dependent assortment of microorganisms that can include pathogenic African trypanosomes and maternally transmitted endosymbiotic bacteria, the latter of which mediate numerous aspects of their host’s metabolic, reproductive, and immune physiologies. One of these endosymbionts, Spiroplasma, was recently discovered to reside within multiple tissues of field captured and laboratory colonized tsetse flies grouped in the Palpalis subgenera. In various arthropods, Spiroplasma induces reproductive abnormalities and pathogen protective phenotypes. In tsetse, Spiroplasma infections also induce a protective phenotype by enhancing the fly’s resistance to infection with trypanosomes. However, the potential impact of Spiroplasma on tsetse’s viviparous reproductive physiology remains unknown. Herein we employed high-throughput RNA sequencing and laboratory-based functional assays to better characterize the association between Spiroplasma and the metabolic and reproductive physiologies of G. fuscipes fuscipes (Gff), a prominent vector of human disease. Using field-captured Gff, we discovered that Spiroplasma infection induces changes of sex-biased gene expression in reproductive tissues that may be critical for tsetse’s reproductive fitness. Using a Gff lab line composed of individuals heterogeneously infected with Spiroplasma, we observed that the bacterium and tsetse host compete for finite nutrients, which negatively impact female fecundity by increasing the length of intrauterine larval development. Additionally, we found that when males are infected with Spiroplasma, the motility of their sperm is compromised following transfer to the female spermatheca. As such, Spiroplasma infections appear to adversely impact male reproductive fitness by decreasing the competitiveness of their sperm. Finally, we determined that the bacterium is maternally transmitted to intrauterine larva at a high frequency, while paternal transmission was also noted in a small number of matings. Taken together, our findings indicate that Spiroplasma exerts a negative impact on tsetse fecundity, an outcome that could be exploited for reducing tsetse population size and thus disease transmission.
Tsetse flies are cyclical vectors of trypanosomes, the causative agents of sleeping sickness or Human African Trypanosomosis and nagana or African Animal Trypanosomosis in Sub-Saharan Africa. The Insectarium de Bobo-Dioulasso (IBD) was created and equipped in the frame of Pan African Tsetse and Trypanosomosis Eradication Campaign (PATTEC) with the main goal to provide sterile males for the different eradication programs in West Africa which is already the case with the ongoing eradication program in Senegal. The aim of this study was to identify the best feeding regime in mass-rearing colonies of Glossina palpalis gambiensis to optimize the yield of sterile males. We investigated the mortality and fecundity for various feeding regimes and day alternation (3×: Monday-Wednesday-Friday, 4×: Monday-Wednesday-Friday-Saturday, 4×: Monday-Wednesday-Thursday-Friday and 6×: all days except Sunday) on adult tsetse flies in routine rearing over 60 days after emergence. The day alternation in the 4 blood meals per week (feeding regimes 2 and 3) had no effect on tsetse fly mortality and fecundity. The best feeding regime was the regime of 4 blood meals per week which resulted in higher significant fecundity (PPIF = 2.5; P = 0.003) combined with lower mortality of females (P = 0.0003) than the 3 blood meals per week (PPIF = 2.0) and in similar fecundity (PPIF = 2.6; P = 0.70) and mortality (P = 0.51) than the 6 blood meals per week. This feeding regime was extended to the whole colonies, resulting in an improved yield of sterile males for the ongoing eradication program in Senegal and would be more cost-effective for the implementation of the next-coming sterile insect technique (SIT) programs in West Africa.
Beekeeping is a very old practice in Burkina Faso and has many advantages, including the availability of honey resources, of endogenous knowledge and support from public policies. However, it faces challenges, including health problems, which are poorly documented. This cross-sectional study was conducted between March and May 2019 in the Central and Central-west regions of Burkina Faso to determine the prevalence and risk factors of wax moth in bee colonies. A total of 200 modern hives were visited of which 106 were colonized or previously colonized. Methods of observation and inspection of the hives were used to search for witnesses of the wax moth infestation: eggs, larvae, pupae cocoons, woven silk cloth, gallery in wax or adult butterflies. A pre-tested questionnaire was used to collect information on beekeepers and apiaries characteristics. An inspection sheet was used to record observations made during the inspection of the hives. The results revealed that the average size was 18 hives by apiary. Hives used were Kenyan, Dadant, and rectangular frame hives with a colonization rate of 53%. The overall prevalence of wax moth was 23.6% [15.5-31.7%]. Other predators/pests were observed in 43.4% of the hives, the main ones being beetles (25.5%) and ants (17%). The analysis of the radio adjusted odds ratio showed the absence of risk factors among the modalities of the studied variables. In view of the results of this pilot study, more extensive studies could be carried out to have a better understanding of the epidemiology of the infestation and its possible impact that it can have on honey production.
African animal trypanosomoses are vector-borne diseases that cause enormous livestock losses in sub-Saharan Africa, with drastic socio-economic impacts. Vector control in the context of an area-wide integrated pest management program with a sterile insect technique component requires the production of high-quality sterile male tsetse flies. In our study, we evaluated the effect of irradiation on the fecundity of Glossina palpalis gambiensis to identify the optimal dose that will induce maximum sterility while maintaining biological performance as much as possible. In addition, male mating performance was evaluated in semi-field cages. The irradiation doses used were 90, 100, 110, 120, 130, 140, and 150 Gy, and untreated males were used as the control. The results showed that pupal production and emergence rates were higher in batches of females that had mated with fertile males than in those that had mated with irradiated males with any experimental dose. A dose of 120 Gy administered to male flies induced 97–99% sterility after mating with virgin females. For the semi-field cage experiments, males irradiated with 120 Gy showed good sexual competitiveness as compared to fertile males and those irradiated with 140 Gy, considering the level of filling of spermatheca and the number of pairs formed. The optimal radiation dose of 120 Gy found in this study is slightly different from the traditional dose of 110 Gy that has been used in several eradication programmes in the past. The potential reasons for this difference are discussed, and an argument is made for the inclusion of reliable dosimetry systems in these types of studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.