Experimental results are presented for film cooling effectiveness with injection from both a single row and multiple rows of holes with spanwise hole-to-hole spacings of three hole diameters. In the multi-row cases, the injection holes were arranged in staggered patterns with streamwise row-to-row spacings of five or ten hole diameters. Adiabatic wall temperature distributions near and downstream of injection holes were well visualized using a scanning infrared camera. The effect of mainstream pressure gradient was partially included. The additive nature of multi-row film cooling was demonstrated experimentally, in agreement with the Sellers superposition model.
In order to investigate several problems associated with the turbine cooling, an air-cooled two-stage axial flow turbine for an aircraft engine application was designed. Aerodynamic characteristics of the two-stage turbine without coolants were obtained first from the cold air turbine tests, and predictions of the turbine performance with supplying of coolants were made using the test results. Following these experiments, cooling tests of the first stage turbine were conducted in the range of turbine inlet gas temperatures lower than 1360 K by the another test apparatus. The descriptions of the turbine and the two test apparatus and the experimental results of the two test turbines are presented. The performance prediction, coolant effects and Reynolds number effect on the turbine performance are also described.
Film-cooled turbine vanes having 14 rows of round holes were designed. Two-dimensional cascade tests of two kinds of scaled vanes were carried out and cooling performances were obtained. Coolant flow distributions were controlled by the impingement and plenum chamber configuration. Higher cooling effectiveness than 0.65 was obtained for the coolant flow ratio of 4.5 percent. And it was clarified that the distributions of cooling effectiveness of the vane surface was governed by the configuration of coolant flow distribution to the cooling hole rows, and, that with using relatively greater amount of coolant to the leading edge region, higher cooling performance can be obtained. Also, numerical calculations of cooling performance and prediction for turbine application were presented.
A laminated and diffusion bonded turbine vane was designed and manufactured with stainless steel wafers. By the use of photo chemical etching, it was possible to make many elaborate and fine cooling passages. The description of the cooling passage construction is given in this paper. Coolant flow analysis has been done and corrected with the aid of preliminary coolant flow discharge test data without the mainstream. Cooling effectiveness analysis by cascade test has also been performed. Corrected flow analysis shows good agreement with the cascade test data. The resulting cooling effectiveness distribution shows relatively small deviation from the averaged value and it is located at the high level of 0.7 with a coolant flow rate ratio of 6 percent. The analysis and discussion are also presented in this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.