Marijuana is a widely used recreational drug with increasing legalization worldwide for medical purposes. Most experimental studies use either synthetic or plant-derived cannabinoids to investigate the effect of cannabinoids on anxiety and cognitive functions. The aim of this study was to mimic real life situations where young people smoke cannabis regularly to relax from everyday stress. Therefore, we exposed young adult male NMRI mice to daily stress and concomitant marijuana smoke for 2 months and investigated the consequences on physiology, behavior and adult hippocampal neurogenesis. Animals were restrained for 6-h/day for 5-days a week. During the stress, mice were exposed to cannabis smoke for 2 × 30 min/day. We burned 2 “joints” (2 × 0.8 g marijuana) per occasion in a whole body smoking chamber. Cannabinoid content of the smoke and urine samples was measured by HPLC and SFC-MS/MS. Body weight gain was recorded daily and we did unrestrained, whole body plethysmography to investigate pulmonary functions. The cognitive performance of the animals was evaluated by the novel object recognition and Y maze tests. Anxietyrelated spontaneous locomotor activity and self-grooming were assessed in the open field test (OFT). Adult neurogenesis was quantified post mortem in the hippocampal dentate gyrus. The proliferative activity of the precursor cells was detected by the use of the exogenous marker 5-bromo-20-deoxyuridine. Treatment effects on maturing neurons were studied by the examination of doublecortin-positive neurons. Both stress and cannabis exposure significantly reduced body weight gain. Cannabis smoke had no effect on pulmonary functions, but stress delayed the maturation of several lung functions. Neither stress, nor cannabis smoke affected the cognitive functioning of the animals. Results of the OFT revealed that cannabis had a mild anxiolytic effect and markedly increased self-grooming behavior. Stress blocked cell proliferation in the dentate gyrus, but cannabis had no effect on this parameter. Marijuana smoke however had a pronounced impact on doublecortin-positive neurons influencing their number, morphology and migration. In summary, we report here that long-term stress in combination with cannabis smoke exposure can alter several health-related measures, but the present experimental design could not reveal any interaction between these two treatment factors except for body weight gain.
Background: Adult-born neurons of the hippocampal dentate gyrus play a role in specific forms of learning, and disturbed neurogenesis seems to contribute to the development of neuropsychiatric disorders, such as major depression. Neuroinflammation inhibits adult neurogenesis, but the effect of peripheral inflammation on this form of neuroplasticity is ambiguous. Objective: Our aim was to investigate the influence of acute and chronic experimental arthritis on adult hippocampal neurogenesis and to elucidate putative regulatory mechanisms. Methods: Arthritis was triggered by subcutaneous injection of complete Freund’s adjuvant (CFA) into the hind paws of adult male mice. The animals were killed either seven days (acute inflammation) or 21 days (chronic inflammation) after the CFA injection. Behavioral tests were used to demonstrate arthritis-related hypersensitivity to painful stimuli. We used in vivo bioluminescence imaging to verify local inflammation. The systemic inflammatory response was assessed by complete blood cell counts and by measurement of the cytokine/chemokine concentrations of TNF-α, IL-1α, IL-4, IL-6, IL-10, KC and MIP-2 in the inflamed hind limbs, peripheral blood and hippocampus to characterize the inflammatory responses in the periphery and in the brain. In the hippocampal dentate gyrus, the total number of newborn neurons was determined with quantitative immunohistochemistry visualizing BrdU- and doublecortin-positive cells. Microglial activation in the dentate gyrus was determined by quantifying the density of Iba1- and CD68-positive cells. Results: Both acute and chronic arthritis resulted in paw edema, mechanical and thermal hyperalgesia. We found phagocytic infiltration and increased levels of TNF-α, IL-4, IL-6, KC and MIP-2 in the inflamed hind paws. Circulating neutrophil granulocytes and IL-6 levels increased in the blood solely during the acute phase. In the dentate gyrus, chronic arthritis reduced the number of doublecortin-positive cells, and we found increased density of CD68-positive macrophages/microglia in both the acute and chronic phases. Cytokine levels, however, were not altered in the hippocampus. Conclusions: Our data suggest that acute peripheral inflammation initiates a cascade of molecular and cellular changes that eventually leads to reduced adult hippocampal neurogenesis, which was detectable only in the chronic inflammatory phase.
ObjectiveDespite intensive research on rheumatoid arthritis, the pathomechanism of the disease is still not fully understood and the treatment has not been completely resolved. Previously we demonstrated that the GTPase-activating protein, ARHGAP25 has a crucial role in the regulation of basic phagocyte functions. Here we investigate the role of ARHGAP25 in the complex inflammatory process of autoantibody-induced arthritis.MethodsWild-type and ARHGAP25 deficient (KO) mice on a C57BL/6 background, as well as bone marrow chimeric mice, were treated i.p. with the K/BxN arthritogenic or control serum, and the severity of inflammation and pain-related behavior was measured. Histology was prepared, leukocyte infiltration, cytokine production, myeloperoxidase activity, and superoxide production were determined, and comprehensive western blot analysis was conducted.ResultsIn the absence of ARHGAP25, the severity of inflammation, joint destruction, and mechanical hyperalgesia significantly decreased, similarly to phagocyte infiltration, IL-1β, and MIP-2 levels in the tibiotarsal joint, whereas superoxide production or myeloperoxidase activity was unchanged. We observed a significantly mitigated phenotype in KO bone marrow chimeras as well. In addition, fibroblast-like synoviocytes showed comparable expression of ARHGAP25 to neutrophils. Significantly reduced ERK1/2, MAPK, and I-κB protein signals were detected in the arthritic KO mouse ankles.ConclusionOur findings suggest that ARHGAP25 has a key role in the pathomechanism of autoantibody-induced arthritis in which it regulates inflammation via the I-κB/NF-κB/IL-1β axis with the involvement of both immune cells and fibroblast-like synoviocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.