ObjectivesThis study aimed to document the trend in blood lead levels in Korean lead workers from 2003 until 2011 and blood lead levels within each of the main industries.MethodsNine years (2003–2011) of blood lead level data measured during a special health examination of Korean lead workers and collected by the Korea Occupational Safety and Health Agency were analyzed. Blood lead levels were determined by year, and a geometric mean (GM) was calculated for each industry division.ResultsThe overall GM blood lead level for all years combined (n = 365,331) was 4.35 μg/dL. The GM blood lead level decreased from 5.89 μg/dL in 2003 to 3.53 μg/dL in 2011. The proportion of the results ≥30 μg/dL decreased from 4.3% in 2003 to 0.8% in 2011. In the “Manufacture of Electrical Equipment” division, the GM blood lead level was 7.80 μg/dL, which was the highest among the industry divisions. The GM blood lead levels were 7.35 μg/dL and 6.77 μg/dL in the “Manufacturers of Rubber and Plastic Products” and the “Manufacture of Basic Metal Products” division, respectively.ConclusionsThe blood lead levels in Korean lead workers decreased from 2003 to 2011 and were similar to those in the US and UK. Moreover, workers in industries conventionally considered to have a high risk of lead exposure also tended to have relatively high blood lead levels compared to those in other industries.
ObjectivesThe purpose of this study was to evaluate the exposure to arsenic in preventive maintenance (PM) engineers in a semiconductor industry by detecting speciated inorganic arsenic metabolites in the urine.MethodsThe exposed group included 8 PM engineers from the clean process area and 13 PM engineers from the ion implantation process area; the non-exposed group consisted of 14 office workers from another company who were not occupationally exposed to arsenic. A spot urine specimen was collected from each participant for the detection and measurement of speciated inorganic arsenic metabolites. Metabolites were separated by high performance liquid chromatography-inductively coupled plasma spectrometry-mass spectrometry.ResultsUrinary arsenic metabolite concentrations were 1.73 g/L, 0.76 g/L, 3.45 g/L, 43.65 g/L, and 51.32 g/L for trivalent arsenic (As3+), pentavalent arsenic (As5+), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), and total inorganic arsenic metabolites (As3+ + As5+ + MMA + DMA), respectively, in clean process PM engineers. In ion implantation process PM engineers, the concentrations were 1.74 g/L, 0.39 g/L, 3.08 g/L, 23.17 g/L, 28.92 g/L for As3+, As5+, MMA, DMA, and total inorganic arsenic metabolites, respectively. Levels of urinary As3+, As5+, MMA, and total inorganic arsenic metabolites in clean process PM engineers were significantly higher than that in the non-exposed group. Urinary As3+ and As5+ levels in ion implantation process PM engineers were significantly higher than that in non-exposed group.ConclusionLevels of urinary arsenic metabolites in PM engineers from the clean process and ion implantation process areas were higher than that in office workers. For a complete assessment of arsenic exposure in the semiconductor industry, further studies are needed.
Objectives: This study is aimed to describe the current situation about urinary biomarker N-methylformamide(NMF) for workers exposed to N,N-dimethylformamide(DMF) according to industrial classification. Materials: Special health examination records of the workers who had undergone urinary biological monitoring in 2013 were collected. The numbers and percentage of workers, whose urinary NMF values were above the limit of detection(LOD) and above the biological exposure index(BEI) were calculated. Health relatedness with DMF as judged by their doctors was also described. All description was classified according to the 9th Korean Standard Industrial Classification(KSIC). Results: It appeared that most workers exposed to DMF belong to manufacturing section(80.7%). The geometric mean(GM) values of urinary NMF were 6.25 mg/L, 3.54, and 3.86 for the manufacturing section, professional, scientific and technical activities section, and for the construction section respectively. In detail, it seemed that division of textiles(except apparel) (GM 7.51 mg/L), division of leather, luggage and footwear(11.59 mg/L), and division of rubber and plastic products(6.89 mg/L) were highly exposed to DMF with a high percentage of workers with urinary NMF values above BEI. This was probably due to the effect of skin absorption that the division of leather, luggage and footwear showed the highest urine NMF GM. Conclusions: It seemed that workers in manufacture industries such as textile, leather, luggage, footwear, rubber and plastic products were highly exposed to DMF. So, efforts should be focused on those industries in order to effectively diminish worker's exposure. Further studies to compare DMF air-monitoring with bio-monitoring according to industrial classification should be considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.