Protein assembly at the postsynaptic density (PSD) of neuronal synapses is mediated in part by protein interactions with PSD-95/discs large/zona occludens-1 (PDZ) motifs. Here, we identify MALS-1, -2, -3, a family of small synaptic proteins containing little more than a single PDZ domain. MALS-1, -2, and -3 are mammalian homologs LIN-7, a Caenorhabditis elegans protein essential for vulval development. In contrast to functions for LIN-7 in epithelial cells, MALS-1 and -2 are selectively expressed in specific neuronal populations in brain and are enriched in PSD fractions. In cultured hippocampal neurons, MALS proteins are clustered together with PSD-95 and NMDA type glutamate receptors, consistent with a postsynaptic localization for MALS proteins. Immunoprecipitation and affinity chromatography studies readily identify association of MALS with PSD-95 and an NMDA receptor subunit. The PDZ domain of MALS selectively binds to peptides terminating in E-T/S-R/X-V/I/L, which corresponds to the C terminus of NMDA type 2 receptors and numerous other ion channels at the PSD. This work suggests a role for MALS proteins in regulating recruitment of neurotransmitter receptors to the PSD.
TMPRSS4 is a novel type II transmembrane serine protease found at the cell surface that is highly expressed in pancreatic, colon and gastric cancer tissues. However, the biological functions of TMPRSS4 in cancer are unknown. Here we show, using reverse transcription-PCR, that TMPRSS4 is highly elevated in lung cancer tissues compared with normal tissues and is also broadly expressed in a variety of human cancer cell lines. Knockdown of TMPRSS4 by small interfering RNA treatment in lung and colon cancer cell lines was associated with reduction of cell invasion and cell-matrix adhesion as well as modulation of cell proliferation. Conversely, the invasiveness, motility and adhesiveness of SW480 colon carcinoma cells were significantly enhanced by TMPRSS4 overexpression. Furthermore, overexpression of TMPRSS4 induced loss of E-cadherin-mediated cell-cell adhesion, concomitant with the induction of SIP1/ZEB2, an Ecadherin transcriptional repressor, and led to epithelialmesenchymal transition events, including morphological changes, actin reorganization and upregulation of mesenchymal markers. TMPRSS4-overexpressing cells also displayed markedly increased metastasis to the liver in nude mice upon intrasplenic injection. Taken together, these studies suggest that TMPRSS4 controls the invasive and metastatic potential of human cancer cells by facilitating an epithelial-mesenchymal transition; TMPRSS4 may be a potential therapeutic target for cancer treatment.
Nae I endonuclease must bind to two DNA sequences for cleavage. Examination of the amino acid sequence of Nae I uncovered similarity to the active site of human DNA ligase I, except for leucine 43 in Nae I instead of the lysine essential for ligase activity. Changing leucine 43 to lysine 43 (L43K) changed Nae I activity: Nae I-L43K relaxed supercoiled DNA to yield DNA topoisomers and recombined DNA to give dimeric molecules. Interruption of the reactions of Nae I and Nae I-L43K with DNA demonstrated transient protein-DNA covalent complexes. These findings imply coupled endonuclease and ligase domains and link Nae I endonuclease to the topoisomerase and recombinase protein families.
Ovarian cancer is a gynecological cancer with a high death rate. We utilized global gene expression profiles of ovarian carcinomas obtained by complementary DNA (cDNA) microarray to identify ovarian cancer-specific proteins. CD9 was upregulated in ovarian carcinomas, and overexpression of the CD9 protein was detected in ovarian carcinomas by immunohistochemistry. CD9 was also overexpressed in several cancer cell lines, including ovarian cancer cells. In order to elucidate the biological significance of highly expressed CD9 in cancer cells, functional studies of CD9 were performed by ectopic expression, knockdown of CD9 using small interfering RNA (siRNA) and blockage of CD9 activity using the CD9-specific monoclonal antibody ALB6. Ectopic CD9 induced cell survival. In order to identify signaling pathways related to CD9, the gene expressions of CD9/SKOV3 cells were analyzed by cDNA microarray. Among the many upregulated genes, tumor necrosis factor (TNF)-α was induced in CD9/SKOV3 cells. The effect of overexpressed CD9 on the downstream signaling events of TNF-α was further investigated. In CD9/SKOV3 cells, the nuclear factor-kappaB (NF-κB)-signaling pathway was constitutively activated. Knockdown of CD9 by siRNA and blockage of CD9 activity by ALB6 in ovarian cancer cells demonstrated that constitutive activation of NF-κB is CD9 dependent and that CD9 is involved in anti-apoptosis. A CD9 functional study was performed in an ovarian cancer-xenograft mouse by injecting ALB6 into the peritoneum. ALB6 resulted in reduced tumor weight compared with that of control IgG(1). Collectively, these results demonstrate that CD9 functions as an oncogene and represents a target for the development of cancer-specific therapeutics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.