This study presents a control strategy and its dynamic analysis of a high-power dc-dc converter, which is constructed with the parallel-connected single active bridge (SAB) dc-dc converters for dc-grid wind farm applications. The structural and operational characteristics of the SAB dc-dc converter have several advantages for high-power applications, and the modular concept of the parallel-connected converter is highly beneficial especially for offshore wind farm applications in terms of maintenance cost and fault tolerance. To justify the feasibility of the parallelconnected SAB dc-dc converter for dc-grid wind farm applications, an input voltage control method based on the PI control will be introduced and the dynamics of the overall system will be analysed. The analysis results are to be verified by means of simulations and experiments.
This paper deals with a new torque ripple minimization method for a Switched Reluctance Generator (SRG). Although, the SRG has many advantages including simple and robust construction, and high power density as a generator, it has not been widely employed in the industry. One of the major drawbacks of the SRG is its high torque ripple that results in high noise operation of the generator. In this paper, a non-unity Torque Sharing Function (TSF) is proposed to minimize the torque ripple over a wide speed range of operation. Simulations as well as experimental results are presented to verify the effectiveness of the proposed torque ripple minimization technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.