To broaden the application scope of lactic acid polymers, a new miniemulsion of poly(alkyl methacrylate-graft-lactic acid)s has been developed. The graft copolymer synthesis was based on a poly(lactic acid) macromonomer having a methacryloyl polymerizable group. The macromonomer and a comonomer of n-butyl methacrylate together with a suitable surfactant formed a miniemulsion of the comonomers in water. A radical copolymerization of the comonomers took place to produce the graft copolymer as a stable miniemulsion. The copolymer showed elastic polymer properties. The miniemulsion system may find useful applications as a new biobased polymer material that is environmentally desirable.
This paper reports a new synthesis of biobased polymers by using itaconic anhydride (IAn) and lactic acid (LA) as renewable starting materials. Poly(lactic acid) (PLA)-graft copolymers were synthesized via two approaches. First, the macromonomer approach utilized IAn for Sn-catalyzed synthesis of PLA-containing macromonomers (IAn-PLA Macro). The macromonomer was radically copolymerized with n-butyl methacrylate (BMA), n-butyl acrylate (BA), methyl methacrylate (MMA), and ethyl methacrylate (EMA) to give efficiently graft copolymers (PLA-Graft copolymer (I)) with molecular weight M n up to 1.61 × 105 having biomass content higher than 34 wt %. Second, the copolymer approach employed first IAn as comonomer for radical copolymerization with BMA, giving rise to IAn-BMA copolymer with M n higher than 5.76 × 104. Then, Sn-catalyzed grafting of PLA onto IAn moiety of the copolymer produced PLA-Graft copolymer (II) with M n higher than 5.88 × 104, showing biomass content ≥29 wt %. In addition, radical homopolymerization of IAn was examined to give polyIAn. By using these two approaches employing IAn as a starting reactive material, PLA-graft copolymers were obtained as “biomass-plastics”. Properties of PLA-Graft copolymers (I) were also examined, which revealed possible applications for coatings and plastics. Furthermore, the IAn-containing graft copolymers will be a convenient starting biomass polymer having reactive IAn moiety in the main chain for further grafting or various functional group-introducing reactions.
For developing broader application of biobased polymers, graft copolymers and comb polymers having poly(lactic acid) (PLA) side chains have been synthesized by using a macromonomer technique. PLA macromonomers (MMm) having a methacryloyl polymerizable group with different PLA chain length with an average length m = 4, 6, 8, 12, 18, and 30 were prepared via ring-opening polymerization of l-lactide using hydroxyethyl methacrylate (HEMA) initiator catalyzed by Sn(Oct)(2). Radical polymerization behaviors of these macromonomers were examined. Radical copolymerization of MMm (m = 4, 6, and 8), with vinyl monomers like n-butyl methacrylate (BMA) and n-butyl acrylate (BA) in water as the reaction medium, gave stable miniemulsions of poly[n-butyl (meth)acrylate-graft-lactic acid]s [PB(M)A-g-PLAm]. MMm with m value higher than 12, however, gave aggregate products in a minor amount besides miniemulsions in a major amount, producing not a stable emulsion system of graft copolymers. The solution copolymerization, on the other hand, produced a wider variety of the graft copolymers, where a wider range of MMm (even m ≥ 12) can be employed. In a 1,4-dioxane solution, the radical copolymerization of MMm with BMA and methyl methacrylate (MMA) gave various graft copolymers [PB(M)MA-g-PLAm]. A new type of comb polymers (PMMm) having PLAm as pendant side chains were obtained by radical homopolymerization of MMm in a 1,4-dioxane solution. The graft copolymers and comb polymers obtained here are amorphous. Physical properties of the polymers from miniemulsions suggested them to be applicable for coatings or elastic materials which are environmentally desirable as a new class of biobased polymers. In addition, the present approach provided fundamental information on relationships between the length of PLA side chain and the bulk properties of the product polymers.
Poly(lactic acid) (PLA) is a biobased polymer made from biomass having high mechanical properties for engineering materials applications. However, PLA has certain limited properties such as its brittleness and low heat distortion temperature. Thus, the aim of this study is to improve toughness of PLA by blending with poly(butylene succinate-co-adipate) (PBSA), the biodegradable polymer having high toughness. Polymer blends of PLA and PBSA were prepared using a twin screw extruder. The melt rheology and the thermal property of the blends were examined. Further the blends were fabricated into compression molded parts and melt-spun fiber and were subjected to tensile and impact tests. When the PBSA content was low, PBSA phase was finely dispersed in the PLA matrix. On the other hand, when the PBSA content was high, this minor phase dispersed as a large droplet. Mechanical properties of the compression molded parts were affected by the dispersion state of PBSA minor component in PLA matrix. Impact strength of the compression molded parts was also improved by the addition of soft PBSA. The improvement was pronounced when the PBSA phase was finely dispersed in PLA matrix. However, the mechanical property of the blend fibers was affected by the postdrawing condition as well as the PBSA content.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.