Elemental selenium generated by the photobleaching of selenomerocyanine dyes forms conjugates with serum albumin and serum lipoproteins that are toxic to leukemia and selected solid tumor cells but well tolerated by normal CD34-positive hematopoietic stem and progenitor cells. Serum albumin and lipoproteins act as Trojan horses that deliver the cytotoxic entity (elemental selenium) to tumor cells as part of a physiological process. They exploit the fact that many tumors have an increased demand for albumin and/or low-density lipoprotein. Se(0)-protein conjugates are more toxic than selenium dioxide, sodium selenite, selenomethionine, or selenocystine. They are only minimally affected by drug resistance mechanism, and they potentiate the cytotoxic effect of ionizing radiation and several standard chemotherapeutic agents. The cytotoxic mechanism of Se(0)-protein conjugates is not yet fully understood. Currently available data are consistent with the notion that Se(0)-protein conjugates act as air oxidation catalysts that cause a rapid depletion of intracellular glutathione and induce apoptosis. Drugs modeled after our Se(0)-protein conjugates may prove useful for the local and/or systemic therapy of cancer.
Leukemia and lymphoma cells are much more sensitive to Merocyanine 540 (MC540)-mediated photodynamic therapy (PDT) than normal pluripotent hematopoietic stem cells and normal granulocyte/macrophage progenitors (CFU-GM). By contrast, most solid tumor cells are only moderately sensitive to MC540-PDT. The limited activity against solid tumor cells has detracted from MC540's appeal as a broad-spectrum purging agent. We report here that non-cytotoxic concentrations of amifostine (Ethyol, Ethiofos, WR-2721) and amphotericin B used either alone or in combination potentiate the MC540-sensitized photoinactivation of leukemia cells, wildtype small cell lung cancer cells, and cisplatin-resistant small cell lung cancer cells. Amphotericin B also enhances the MC540-sensitized photoinactivation of normal CFU-GM whereas amifostine protects CFU-GM against the cytotoxic action of MC540-PDT. The yield of CD34-positive normal hematopoietic stem and progenitor cells is only minimally diminished by pretreatment with amifostine, amphotericin B, or combinations of amifostine plus amphotericin B. Purging protocols that combine MC540-PDT with amifostine or with amifostine plus amphotericin B may offer a simple and effective approach to the purging of autologous stem cell grafts that are contaminated with solid tumor cells or the purging of stem cell grafts from heavily pretreated leukemia patients that contain reduced numbers of normal stem and progenitor cells and, therefore, can ill afford additional losses caused by purging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.