Targeting genetic alterations of oncogenes by moleculartargeted agents (MTA) is an effective approach for treating cancer. However, there are still no clinical MTA options for many cancers, including esophageal cancer. We used a short hairpin RNA library to screen for a new oncogene in the esophageal cancer cell line KYSE70 and identified YES proto-oncogene 1 (YES1) as having a significant impact on tumor growth. An analysis of clinical samples showed that YES1 gene amplification existed not only in esophageal cancer but also in lung, head and neck, bladder, and other cancers, indicating that YES1 would be an attractive target for a cancer drug. Because there is no effective YES1 inhibitor so far, we generated a YES1 kinase inhibitor, CH6953755. YES1 kinase inhibition by CH6953755 led to antitumor activity against YES1-amplified cancers in vitro and in vivo. Yes-associated protein 1 (YAP1) played a role downstream of YES1 and contributed to the growth of YES1amplified cancers. YES1 regulated YAP1 transcription activity by controlling its nuclear translocation and serine phosphorylation. These findings indicate that the regulation of YAP1 by YES1 plays an important role in YES1-amplified cancers and that CH6953755 has therapeutic potential in such cancers. Significance: These findings identify the SRC family kinase YES1 as a targetable oncogene in esophageal cancer and describe a new inhibitor for YES1 that has potential for clinical utility. See related commentary by Rai, p. 5702
Recent studies have revealed the occurrence of five first exon variants of the rat prolactin receptor mRNA, suggesting that multiple promoters direct prolactin receptor transcription in response to different regulatory factors. In the present study, regional expression of these first exon variants, as well as two prolactin receptor subtypes generated by alternative splicing, was examined in the brains and anterior pituitary glands of female rats. Expression of the long-form was detected in the choroid plexus, hypothalamus, hippocampus, cerebral cortex and anterior pituitary gland, whereas the short form was detected only in the choroid plexus. E1-3 mRNA, a first exon variant, was detected in the choroid plexus, hypothalamus, and anterior pituitary gland, whereas E1-4 was detected only in the choroid plexus. Other variants were not detectable by the polymerase chain reaction protocol employed in this study. Ovariectomy increased the short form in the choroid plexus and the E1-3 expression in the choroid plexus and pituitary gland, but changes in the long-form and E1-4 expression were minimal. Replacement of oestrogens and prolactin suggest that oestrogens down-regulate E1-3 expression in the choroid plexus and pituitary gland, and that the negative effect of oestrogen is mediated by prolactin in the pituitary gland. The present results revealed the region-specific promoter usage in prolactin receptor mRNA transcription, as well as the involvement of oestrogens in the regulation of E1-3 mRNA expression in the brain and pituitary gland.
The developmental process of prolactin (PRL) cells in the fetal pituitary gland was studied in mice. Although PRL cells were hardly detectable in the pituitary gland of intact fetuses, a treatment with 17beta-estradiol (E(2)) in vitro induced a number of PRL cells that varied drastically in number depending on the stage of gestation with a peak at embryonic d 15. This effect was specific to E(2), with epidermal growth factor, insulin, and forskolin failing to induce PRL cells. Although both estrogen receptor (ER)alpha and ERbeta were expressed in the fetal pituitary gland, the results from ER knockout models showed that only ERalpha mediates E(2) action on PRL cells. A few PRL cells were observed in ERalpha-deficient mice as well as in their control littermates, suggesting that estrogen is not required for the phenotype determination of PRL cells. Unexpectedly, the effect of E(2) on the induction of PRL cells in vitro was diminished after embryonic d 15. Present results suggest that the exposure of fetal PRL cells to glucocorticoids (GCs) results in a reduction of sensitivity to E(2). The mechanism underlying the down-regulation of estrogen sensitivity by GCs was found not to be down-regulation of ER levels, induction of annexin 1, a GC-inducible inhibitor of PRL secretion, or a decrease in the number of PRL precursors by apoptosis. The effect of GCs appeared within 2 h and did not require a de novo protein synthesis. GCs are considered to be involved in the mechanisms of silencing pituitary PRL in gestation possibly through a novel mechanism.
Analysis of structural rearrangements at the individual chromosomal level is still technologically challenging. Here we optimized a chromosome isolation method using fluorescent marker-assisted laser-capture and laser-beam microdissection and applied it to structural analysis of two aberrant chromosomes found in a lung cancer cell line. A high-density array-comparative genomic hybridization (array-CGH) analysis of DNA samples prepared from each of the chromosomes revealed that these two chromosomes contained 296 and 263 segments, respectively, ranging from 1.5 kb to 784.3 kb in size, derived from different portions of chromosome 8. Among these segments, 242 were common in both aberrant chromosomes, but 75 were found to be chromosome-specific. Sequences of 263 junction sites connecting the ends of segments were determined using a PCR/Sanger-sequencing procedure. Overlapping microhomologies were found at 169 junction sites. Junction partners came from various portions of chromosome 8 and no biased pattern in the positional distribution of junction partners was detected. These structural characteristics suggested the occurrence of random fragmentation of the entire chromosome 8 followed by random rejoining of these fragments. Based on that, we proposed a model to explain how these aberrant chromosomes are formed. Through these structural analyses, it was demonstrated that the optimized chromosome isolation method described here can provide high-quality chromosomal DNA for high resolution array-CGH analysis and probably for massively parallel sequencing analysis.
Glucocorticoids are involved in the regulation of the rat growth hormone-releasing hormone (GHRH) receptor gene expression, but they act only in the presence of the pituitary specific transcription factor, pit-1. In this study, the role of pit-1 in the glucocorticoid stimulation of the GHRH-receptor gene transcription was examined. The results suggest the presence of a silencer element in the promoter and it is postulated that pit-1 permits glucocorticoid action through suppressing the inhibitory effect of an as yet unknown factor that binds to this element. The present results also suggest that the synergistic activation of the rat GHRH-receptor gene transcription depends on the proper distance between the proximal glucocorticoid response element and the pit-1 binding site.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.