SUMMARYAn effective stress method is presented for the analysis of liquefaction of ground including soil-structure interaction, based on an explicit-implicit finite element method. A simple constitutive model is developed to be incorporated in the effective stress method. The constitutive model consists of the Ramberg-Osgood model extended to two-dimensional problems and a new dilatancy model. The effectiveness of the constitutive model is examined with results of a simple shear test. Besides, the effective stress method is verified by comparing its numerical results,with results of a shaking table test. It is found that the present method can simulate well the response of a saturated dense sand-structure system. The difference of the response computed by the effective stress method and the total stress method is discussed. It is found that the total stress method can simulate the response of the saturated sand within an accumulating excess pore water pressure of less than 70 per cent of the initial overburden stress.
This paper presents a summary of the element test simulations (calibration simulations) submitted by 11 numerical simulation (prediction) teams that participated in the LEAP-2017 prediction exercise. A significant number of monotonic and cyclic triaxial (Vasko, An investigation into the behavior of Ottawa sand through monotonic and cyclic shear tests.
SUMMARYThe objectives of this paper are to show practically: (1) the validation of a proposed three-dimensional effective stress analysis for the pile foundations, and (2) the effectiveness of remedial deposits on pile stresses under liquefaction by making comparisons between the results of centrifuge tests and those of the proposed analysis. Two foundation models supported by end-bending piles were studied with improved and unimproved deposits.There exists a good consistency between the numerical and experimental results for excess pore water-pressure ratios ranging from 0 to about 0·9. From the numerical results, the bending moment at the pile top with the improved deposit is about 50 per cent lower than that with the unimproved deposit. However, it was found that the smaller the bending moment develops in the pile with the improved deposit, the larger the compressive and/or tensional axial stresses in the pile. This is due to the predominant excitation of rocking vibration of the foundation.From the analytical and experimental results, it has been found that the remedial method can be a variable means to protect piles from soil liquefaction hazards. However, both axial stress and bending moment produced in piles should be considered in assessing the liquefied seismic capacity of group pile-foundation-structural systems with improved soil deposits.
This paper presents comparisons of 11 sets of Type-B numerical simulations with the results of a selected set of centrifuge tests conducted in the LEAP-2017 project. Time histories of accelerations, excess pore water pressures, and lateral displacement of the ground surface are compared to the results of nine centrifuge tests. A number of numerical simulations showed trends similar to those observed in the experiments. While achieving a close match to all measured responses (accelerations, pore pressures, and displacements) is quite challenging, the numerical simulations show promising capabilities that can be further improved with the availability of additional high-quality experimental results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.